
CS148

Building Intelligent Robots

Week 4 : PID Control Out: 4 Oct 2005

Preliminary Tasks before 6 Oct 2005, 9am

The purpose of this week’s lab and project is to implement a simple but powerful control system
called a PID controller. Your task will be to create a wall following robot.
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PID Review

PID stands for Proportional Integral Derivative control (after the formula that uses these compo-
nents to calculate the control parameter.) It is used in a wide variety of real life situations - cruise
control in cars is an example that comes to mind. When talking about PID control, there are some
terms we need to define. The set point is defined as the goal of the system or the position where you
want your system to be, this is denoted as s(t), the set point at time t. For cruise control, it would
be the desired speed you want. The process variable is the position where your system currently is
(denoted as v(t)), the process variable at time t. The difference between the set point (goal) and
process variable is your error (denoted as e(t)), the error at time t. Ideally your controller should
force the error to zero.

The basic idea is that the output of a PID controller is, in theory a linear combination of the error,
the integral of the error, and the derivative of the error. In practice, however, we usually take
the derivative of the process variable instead. We do this because the derivative of the difference
between two variables is the same as the sum of the derivatives, and the derivative of a constant
(s(t) in this case) is zero.

The PID controller attempts to control the process variable (current state of the system) according
to the formula:

output(t) = Kproportional

[

e(t) +
1

Kintegral

∫ t

0

e(t) dt −
1

Kderivative

d

dt
v(t)

]

The term output(t) is the output applied to your system at time t. The constants K are used to
weigh the sum of the three terms to produce an output that steadily drives the error to 0.

The tricky part of PID control is tuning these constants appropriately so they eventually eliminate
the error. The output is applied to the process variable, hopefully correcting the error. In the case
of cruise control, the output would be applied to the motors to either speed up or slow down the car.
The proportional part of the formula (e(t)) helps to correct the error by applying an output that
is proportional to the amount of error but does not reduce the steady-state error, that is the error
that has accumulated over time. That is why we have the part of the equation, ( 1

Kintegral

∫ t

0
e(t)),

which sums (integrates) the error over time. The differential part, ( 1

Kderivative

d

dt
v(t)) is mainly there

to tame down the overshoot (after proportional and integral correction), since the differential reacts
to the rate of change of the process variable.
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Lab 4: PID Control 6 Oct 2005

Task:

• This week’s project is to build a wallfollowing robot. You must use PID control (actually
just the proportional and derivative parts) in your wallfollowing algorithm. You will want
to implement the proportional part first before adding the derivative part to your controller.
The motors should react depending on whether the sonar sensor detects that the robot is
going too close or moving away from the wall.

When finished your robot should be able to

– Move parallel along a wall after some error correcting (PID control)

– Be able to turn corners and keep following the wall.

Some things to think about before doing this part of the lab:

Sonar Sensor. Consider the positive and negative sonar values and what they indicate about
the robot’s position relative to the wall.

As a further adjustment you may now have to tweak the proportional constant. Now why might
you need to tweak the proportional constant? Consider the different scenarios shown in Appendix
A. (The horizontal line labeled SP is the set point (target)).

In the first figure the velocity fluctuates wildly for a long time before reaching the set point. This
is clearly not desirable. In the second figure the velocity does not fluctuate that wildly but it takes
a long time to settle down and in the third figure, the velocity fluctuates wildly but settles in a
short time. You want your robot to display, ideally, behavior which could cause it to quickly reach
the set point without much deviation. Practically it will probably be somewhere between figure 2
and figure 3. The way to manipulate the graphs is by adjusting the proportionality constant. You
can narrow your search down to the perfect proportionality constant by doing a kind of a binary
search. Start with a large extremes of values (a very large value and a very low value) and keep
decreasing the difference between the values until the two values become the same. That will be
your desired proportionality constant.

One way to see how long it takes to settle on the set point is to print out the process variable to
the lcd of the RCX and see how long it takes to get to the set point. You can also display the error
and see how long it takes to reach 0. Doing this will also show how the control sometimes corrects
itself but then overshoots the goal.

Corners: You might want to use a bumper to detect when the robot has to turn a corner. For
the other type of corner, you will know when you are at a corner when you have been traveling
parallel along a wall and then suddenly your sonar readings change drastically.
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PID: Calculating the PID values might seem a bit tricky as you might wonder how would you
take the integral of the error or the derivative of the process variable. An easy way to approximate
the integral of the error would be to keep a running sum of the error. This is essentially what
taking the integral of the error does, it takes the sum of the error over a certain period of time.
The derviative of the process variable measures the rate of change; you can calulate this by taking
the difference between the current process variable and the last process variable. This will give you
how much the process variable changed from the last measurement.

4


