(CS148 Advanced Track — Laboratory 1 — Player/Stage/Gazebo Introduction

1 Dates

Lab date: September 15, 2005

2 Introduction

This lab is structured to acquaint you with the subtleties involved in using
the Player/Stage/Gazebo (PSG) robot interface and simulation system. Player
is a network server for robot control. Player runs on board a single robot
and provides a clean interface to the robot’s sensors and actuators over an IP
network. Stage is a 2D robot simulator suited for large populations of robots
in an environment specified by a bitmap image. Gazebo is a 3D physics-based
robot simulator suitable for smaller numbers of robots simulated at high fidelity.
The physics for Gazebo is provided by the Open Dynamics Engine (ODE),
which integrates physical dynamics for arbitrary kinematic structures through
optimization.

PSG provides an infrastructure for developing robot controllers. You will
write Controllers are as client programs that send control commands to and re-
quest information from a robot through its Player server. Stage and Gazebo can
simulate various types of robot platforms (i.e., hardware) and populations. The
same interface, provided by the Player robot server, is used to control a robot in
the real world or its equivalent in a Stage/Gazebo simulation. Robot platforms
that are not currently supported in PSG can developed through implementing
appropriate Player server interfaces and devices in Stage or Gazebo.

Because of its flexibility and portability, PSG will give you good experi-
ence with developing robot controllers. Additionally, many interesting advanced
track final projects can be implemented using PSG.

3 PSG Framework

As illustrated in Figure 1, PSG is a framework for robot control consisting of
devices, robot servers, and robot clients

Devices (e.g., a laser, a camera, or a complete robot) are actual hardware
in the real world or simulated hardware that exists in a virtual environment
maintained by Stage or Gazebo.

A robot server (e.g., Player) is the information interface between the robot
and any program that requests information from or sends commands to the
robot. Regardless of whether a device is real or simulated, the robot server
provides the same interface to the robot for client programs. Thus, controllers
developed on a simulated device will immediately run the equivalent real robot
device!, given PSG support for the device.

1Be careful to note that controller that can run a robot does does not imply that the
controller will work properly or yield expected control results



(CS148 Advanced Track — Laboratory 1 — Player/Stage/Gazebo Introduction

Client | Server

A]—E;-‘S.E":p b

lish .
%‘
Ope

n deyjce(s)_

Figure 1.1: Example client/server interaction

Figure 1: Example PSG client/server interaction

A robot client is a user-developed program that accesses robot functions
through the robot server. For controlling a single, the robot client will first
establish a connection to the robot’s server and then command the robot by
reading data from the server and sending appropriate control command back.
The job of the developer is to write control programs that produce commands
that yield desired behavior from information received from the robot server?

Lastly, one of the major advantages of Player as a robot server is its in-
dependence from a particulare client-development language. The interaction
between Player and a client program is done completely over a TCP/IP (or
UDP/IP) network connection. Thus, any language with libraries that supports
Player functionalities can be used to develop robot clients. The most supported
client language is C (supported through libplayerc). Many other languages are
supported including C++, Python, Java, and GNU Octave.

2Referring to the lecture on control theory, the description of the robot client should remind
you of feedback control (i.e., commands [u] that produce desired state [x] given observations

D).



(CS148 Advanced Track — Laboratory 1 — Player/Stage/Gazebo Introduction

4 Instructions

For this lab, you will be expected to work with Player/Stage/Gazebo to set up
and run a very simple demonstration of PSG.

The first thing that you must do is make sure you can use the PSG tools,
which are located in the /contrib/projects/psg/local/bin directory. Your PATH
variable must point there for the tools to work, so add this line to your .envi-
ronment file:

pathappend PATH /course/projects/psg/local /bin

You can see that this worked if you type wxgazebo into a terminal.

e Start by copying the directory /course/cs148/asgn/atrack/labl somewhere
you can use it. In here you will see two directories, gazebo and player.

— go into the gazebo folder and type 'wxgazebo labl.world’ You should
see a world pop up with some objects and a robot in it.

— In a new terminal, go into the player directory and type ’player -g 0
labl.cfg’ This will set up the player client on port 6665 (which is the
default port).

— In a third terminal, type ’playerv’ and a window will pop up with a
grid. Select the following:
* devices—position—subscribe
* devices—position—command
* devices—laser—subscribe
— Now you can see the laser data from the robot, and you can control

the robot by dragging the '+’ in the center around different direc-
tions. Playerv is simply a client with a gui.

e Now it is time to write our own client

In the directory player/client, there is a sample client. Type 'make’
to compile it.

To run it, you must have gazebo running as well as player ('player -g
0 labl.cfg’), and type ’./labl 1 6665’

— The 1’ is a speed multiplier for the robot, and the 6665’ is the port
number to connect to.

— Look through the code for this client. Right now, all this does is
move the robot forward once and then quit.

e Your task for this lab is:

— Make the robot move around this world avoiding obstacles using laser
ranging data, and only quit if the robot makes it out of the arena or
a command-line specified time limit is reached. Also, record data of
where the robot has been to a file.



(CS148 Advanced Track — Laboratory 1 — Player/Stage/Gazebo Introduction

5 a BlE=]

Fle View Action

Figure 2: Stage environment (artistically created by cjenkins) with 2 robots

— You will also have to modify the labl.cfg file to include truth data.
— To do these things, you may use TRUTH data, but not to avoid
obstacles.

— Documentation for this is found on the player/stage website, http://playerstage.sourceforge.net/doc/

5 A Few More Things

You were given this world to play around in, but what if you wanted to make

your own? Look in the /labl/worlds directory, and you will find the .jpg file

that was used to make the world that you just explored. On the website:

http://playerstage.sourceforge.net/doc/Gazebo-manual-0.5-html/gzbuilder.html
you will find information on how to use the gzbuilder utility to make your own

terrain files, which are incorporated into .world files.

e Make your own world (you can use labl.world as a model)

— Make a new terrain file from a new .jpg



(CS148 Advanced Track — Laboratory 1 — Player/Stage/Gazebo Introduction

— Add at least TWO robots to this environment

— write a .cfg file to go along with this world, using labl.cfg as a model.
e Using playerv, control both robots.

e Additionally, try using your world image as a map in Stage.



