
Chapter 5

Topic Models, PLSA, and
Gibbs Sampling

5.1 Topic Modeling

Notably absent in this book is any discussion of the meaning of language.
For example, the entire point of translation is to capture the meaning of a
sentence written in one language in a second sentence written in another,
yet the models we created did not deal with the meanings of the words
at all. (Though they did rely on the fact that the sentences pairs of the
requisite parallel corpus meant the same thing.) Indeed, the success of MT
has been due to our ability to translate without the program knowing what
it is talking about.

A large fraction of current CL research is trying change this, but text-
books such as this restrict themselves to areas where there is some consensus
on how things should work, and as far as meanings are concerned these are
few and far between. This chapter is concerned with one of these few: topic
modeling.

Intuitively texts such as, e.g., newspaper articles, are “about” something
— their topic. So consider the following

The crisis that has been rapidly building over North Korea’s sus-
pected nuclear weapons program seems for now to have abated.
Inspectors from the International Atomic Energy Agency have
been sent to Pyongyang to see what they can learn about the
refueling of a key reactor that is now underway. Washington wel-
coming this and other recent signs hinting at a more cooperative

135

136 CHAPTER 5. TOPIC MODELS, PLSA, AND GIBBS SAMPLING

attitude by the North, says that it’s ready to reopen high-level
contacts with Kim II Sung’s regime.

If asked to pick words from the article (which dates from about 2000) that
best express what it is about we would pick, say, “nuclear”, “North Korea”,
“inspectors”, as opposed to, say, “attitude”, or “contacts.” Furthermore, we
would not hesitate to say that this articles is about North Korea’s nuclear
program and is not about World-War II, or the United States Congress.

This chapter is concerned with topic modeling, writing programs that
get at this notion of “aboutness.”

5.2 Probabilistic Latent Semantic Analysis

In particular we start with a formal model called Probabilistic Latent Se-
mantic Analysis or PLSA. PLSA models have much in common with the
language models we dealt with in Chapter 1 in so far as they allow us to
assign a probability to a text, but instead of basing the probability of a
word on the previous word, we base it on the topics of the document. If our
corpus consists of M “documents” (e.g., newspaper articles), each with Ld
words, then the probability of our corpus c is the product of the document
probabilities

P(c) =

M∏
d=1

P(wd1,ld) (5.1)

where wd1,ld is the sequence of words w1,Ld in document d. The next equation
is the key one. We say the probability of the words is

P(wd1,ld) =

Ld∏
i=1

N∑
t=1

P(Ti = t | d)P(wi | t). (5.2)

Here we assume that every word wi is generated from a single topic, Ti which
is one of N possible topics, and given the topic, the word is independent of
all of the other words in the document.

Notation: Ti is the random variable for the topic of word wi. D is the ran-
dom variable denoting a particular document, and a particular value
is d.

It is important to emphasize here that as in all generative models when we
say “word” here we are talking about word tokens, not types. Thus a given
word type may be assigned different topics in different documents. We do

DRAFT of 27 January, 2016, page 136

5.2. PROBABILISTIC LATENT SEMANTIC ANALYSIS 137

not bother to generate document lengths, nor the number of documents —
just the words. We choose in advance how many different topics N are
allowed. We will choose, say fifty. The model is then parameterized by two
sets of parameters:

P(T = t | D = d) = δd,t

P(Wi = w | Ti = t) = τt,w

The generative story for this model is as follows: for each word we first pick
a topic according to a document specific distribution δd,t, and then pick a
word from this topic according to the distribution τt,w. So the δ’s specify
the topics of the documents, and the τ ’s specify the words that are used
in a topic. The probably of the data is the sum over all ways it could be
generated.

Here we are not interested in language modeling, but determining topics,
so we ignore words that are not topic specific. In particular we use a stopword
list — a list of words to ignore. Such lists were originally created for infor-
mation retrieval purposes. Stopwords appearing in the query were ignored.
These words include function words such as prepositions, pronouns, modal
verbs, etc. For our purposes we also remove as some very common/general
words such as “large”, “big”, “slowly”, etc.

Example 5.1: We ran a fifty topic PLSA model run on 1000 newspaper articles,
including the article excerpted at the start of this chapter. It produced the following
δ parameters for the article:

Topic P(t | d)
23 0.4226
28 0.5774

These two topics account for essentially all of the probability mass. Figure 5.1
shows words associated with five topics, two associated with this article, three not.
While similar, topic 23 seems to be about nuclear energy in general, while 28 is
more focused on international aspects of nuclear weapons. They clearly contrast
with other topics such as topic 46 which is about South Africa and apartheid.

In Figure 5.1 the words we show are those that maximize the smoothed
probability of the topic given the word

P̃(t | w) =
nt,w(c) + θ

n◦,w(c) +Nθ
(5.3)

where we set θ to 5. One of the exercises asks you to think about why we used
a smoothed probability here, rather than, say, an unsmoothed maximum
likelihood estimate for the probability of topic given word.

DRAFT of 27 January, 2016, page 137

138 CHAPTER 5. TOPIC MODELS, PLSA, AND GIBBS SAMPLING

Topic Words
1 white house watkins clinton helicopter david trip staff officials

golf camp military office president course cost duffy
chief presidential washington

2 u.n. rwanda united government bosnia war troops nations
bosnian peace serbs military forces rebels force army
peacekeeping president somalia boutros-ghali

23 korea nuclear korean south japan japanese macedonia koreans
waste russia economic seoul plutonium officials culture energy
weapons greece problem soviet

28 north korea nuclear sanctions fuel u.s. united officials security
iaea council rods international weapons agency reactor
administration clinton pyongyang china

46 africa south government mandela development countries black
international nations aid african country housing program
apartheid economic national lane political president

Figure 5.1: The words associated with five of the fifty topics created by a
PLSA model of one thousand newspaper articles.

5.3 Learning PLSA parameters

We again turn to EM to learn the necessary parameters. As before, we
first consider learning with a training corpus in which every word token in
our corpus c is marked with its associated topic. The same word may have
a different topic in different documents. In particular, note that the word
“president” appears in topics 1, 2, and 46 in Figure 5.1. With such a corpus
we can set our parameters to their maximum-likelihood estimates:

δd,t =
nd,t(c)

nd,◦(c)
(5.4)

τt,w =
nt,w(c)

nt,◦(c)
. (5.5)

Since we do not have labeled data, we use EM. The algorithm is as
follows:

1. Pick positive initial values for τt,w for all topics t and words w (equal
is fine).

2. Pick positive vales for δd,t for all documents d and topics t. They

DRAFT of 27 January, 2016, page 138

5.4. GIBBS SAMPLING 139

should be almost equal, but with about 2% randomness to avoid the
saddle point.

3. For i = 1, 2, . . . until convergence do:

(a) E-step:
Set nd,t and nt,w to zero for all documents d, topics t, and words
w
For each word w (that appears in its document d) do:

i. Set p =
∑N

t′=0 δd,t′τt′,w,

ii. Set q =
δd,tτt,w

p

iii. Set both nd,t and nt,w += q.

(b) M-step:
Set δd,t = nd,t/nd,◦ and τt,w = nt,w/nt,◦.

This is quite similar to EM for IBM model 1, though there is one significant
difference. Note the instruction to initialize the δd,t’s with a small random
jitter to move the initial probabilities away from the saddle point where all
probabilities are equal.

Example 5.2: If we seed our random number generator with a different starting
point in the above example we get a different output. In one case rather than our
North Korea article falling between topics 23 and 28, we get it having all or its
probability mass concentrated on topic 3. This also shows that as opposed to IBM
model 1, PLSA is not unimodal.

5.4 Gibbs Sampling

As we have noted before, work in statistical computational linguistics falls
under three broad headings: modeling (e.g., writing down the basic equa-
tions, and assumptions that you use to describe what is going on), inference
(coming up with a computational method that allows your programs to find
the model parameters required), and decoding (methods to use the model
in practice).

PLSA is a model, and, as described above, we used EM as our inference
algorithm. In this section we introduce a second useful inference method,
Gibbs sampling. Gibbs sampling is the most commonly used of a slew of
related sampling algorithms.

In Gibbs sampling we initially “label” every event randomly. For topic
modeling this means randomly assigning every word token to a topic. Usu-
ally we use a uniform distribution. Having randomly initialized the topics,

DRAFT of 27 January, 2016, page 139

140 CHAPTER 5. TOPIC MODELS, PLSA, AND GIBBS SAMPLING

we now pretend they are correct and repeatedly go though all of the words,
and reassign words to topics randomly, but instead of using a uniform dis-
tribution, use the distribution induced by the already (randomly) assigned
topics.

Example 5.3: When using this procedure on the news article quoted earlier,
after the initial random assignment of word tokens to topics, our example article
has words assigned to most of the fifty topics, with topic 16 having eleven (the
maximum) and topics 20 and 29 having zero. Most have between one and three.
By the end of the procedure the word topics have moved around quite a bit. Again
we get two major topics, 33 (atomic energy) and 18 (North Korea nuclear program),
but we also get a smaller contribution (about 10%) in a third which seems to be
about international regulatory agencies. As before, using a different seed for the
random numbers leads to different outcomes.

The basic idea is that after we have initialized the topics assigned to
all of the words, in some sense we “know” the nt,w counts that we need in
in equations 5.4. Of course, when we introduced those equations we were
assuming that we had labeled training data. Nevertheless, if we assign the
topics to words randomly we can still do the same mathematical operations
and compute and the τt,w’s and δd,t’s. We now resample each w by picking a
new topic t for it, but this time not from a random distribution, but rather
according to the distribution we used in the middle of the PLSA version.

That is when we pick a new topic for w, the more likely it (according to
current assignments) to be generated in topic t the more likely it will be to
be put in t this time.

Example 5.4: Suppose one of our documents has 1000 words, and the word
“Nato” has been assigned topics 1, 2 and 3, 1 time, 3 times and 6 times respectively
(and zero for all others). If the probability of “Nato” is, say, .01 for all topics, then
when we resample, the probabilities of being put into these three topics will be .1,
.3 and .6. We then use a random number generator. If it produces random numbers
between 0 and 999, we would pick topic one if we got a number from 0 to 99.

The idea is that when assigning topics randomly some words will end up in
one or two topics more than the rest, just by the luck of the draw. In the
previous example, we have “Nato” and topic 3. This means that everything
else being equal, documents in which “Nato” appears will tend to have
document probabilities δd,t with propensity to prefer topic 3, and thus words
that appear together with “Nato” will have a higher than average probability
to move to topic 3 when we resample. Done many times, over all of the
words, the result is a sorting of words into somewhat coherent groups.

DRAFT of 27 January, 2016, page 140

5.5. TOPIC-MODEL EVALUATION 141

We complicate this idea in two minor ways. First, rather than estimating
our topic and document probabilities using maximum likelihood estimates
we smooth them. That is

P̃(t | d) =
nd,t(c) + α

nd,◦(c) +Nα

P̃(w | t) =
nt,w(c) + α

nt,◦(c) + V α

where N is the number of topics and V is our vocabulary size. To see
why this is important, remember that we initially assigns words to topics
randomly. Earlier we said that in our running-example news story had two
topics, 20 and 29, that had no words assigned to them in our story. If
we did not smooth, this means that we could never have any words from
those topics assigned to words in this story because the maximum likelihood
estimate for P(t | d) would be zero.

Secondly, before we resample a word we “remove” it from the current
topic and document counts.

P̃(t | d) =
nd,t(c

−) + α

nd,◦(c−) +Nα
(5.6)

P̃(w | t) =
nt,w(c−) + α

nt,◦(c−) + V α
(5.7)

Notation: c− denotes the corpus c minus the word token w that we are
sampling

The resulting algorithm is shown in Figure 5.2.
For reasons we will not go into here, convergence of the data likelihood

is not the appropriate measure for when to stop the iteration in this model.
Instead in Figure 5.2 we say to repeat “C times”, where C is just a parameter
chosen by the user, presumably based upon some experimentation with how
the quality of the modeling changes with the number of iterations.

5.5 Topic-model Evaluation

In our discussion of topic models we have not discussed how they are used,
or how their quality is to be evaluated. As for use, there is a lot of on-
going research into situations where we need judgements about the topic
under consideration at a certain point in the text. For example, suppose
the computer is given some written reviews of a restaurant with the goal

DRAFT of 27 January, 2016, page 141

142 CHAPTER 5. TOPIC MODELS, PLSA, AND GIBBS SAMPLING

1. for all document d , and words w in the document, assign w to topic
t from the uniform distribution over topics.

2. do C times

(a) for all documents d and words in the document w

i. “remove” w from our current nd,t(c) and nt,w(c) counts —
i.e., decrement each by one.

ii. estimate the probability of the word being generated by each
possible topic as done for EM, but using equations 5.6 and
5.7.

iii. choose the next assignment of w to a topic randomly from
this distribution

iv. increment nd,t and nt,w accordingly.

Figure 5.2: Gibbs sampling algorithm for topic modeling

of summarizing the information in a formatted version under the headings
of “food,” “service,” “price,” etc. At a certain point the program finds the
word “great.” The program might want to use a topic model to decide what
aspect of a restaurant is being discussed at that point.

As for evaluation, when feasible, evaluating a model in light of its end
use is always desirable. A good model is one that correctly decides what is
”great” about the restaurant under review. But there is a lot to be said for
evaluations which abstract away from the end use. Our evaluation of parsers
was in terms of how well they were able to match a human’s judgement of
the correct parse. The idea is that no matter what the application, we
have some reasonable idea of what parsers are suppose to do, and if we can
evaluate against that ideal, it should tell us how well the parser will perform
in a wide variety of situations.

So one possibility is to give human judges the word lists produced and
ask them to assess their quality and give, say, some numerical grade for each
list. This would allow us to find particularly good and bad topic lists and the
average score would say something about the overall quality of the program.
This has been done, and while you can get some levels of agreement, the
directions and the scoring are sufficiently vague that you will have a hard
time saying that any program is much better than any other.

An easier evaluation mechanism to administer is called intrusion detec-

DRAFT of 27 January, 2016, page 142

5.5. TOPIC-MODEL EVALUATION 143

tion. Suppose I tell you that I am going to give you a list of words which
my computer program has judged to all be on the same topic, except that
one of the words was selected at random, and then mixed in with the others.
Your task is to find that word, the “intruder.” As you might imagine, if the
intruder is say, “piano” we could do reasonably well for the topics in Figure
5.1. On the other hand, the less focused our word set, the more likely it is
that the random word might look as if it belonged as well as any of the oth-
ers. Intrusion detection has been show to correlate quite well with general
quality judgements of a set of topical words.

However, finding intruders still requires a human evaluator. So imagine
if your professor wanted to grade the programs you produced to show that
you have understood the material in this chapter. He or she would have to
set up intrusion detection problems, and hire people to do the evaluation
separately for each program in the class. In particular, it is not be possible
to throw in an intruder and have your program do the evaluation. We did
this in parsing but here your program would find the task trivial. It just
made up the list. Of course it can find out which one does not belong!

The problem is ultimately that there does not seem to be a “ground
truth” for topic modeling. It seems hard to imagine getting people to sit
down with one thousand newspaper articles and writing down the correct
answer. Nevertheless, there is agreement on better and worse topics. And
there has been one suggestion for finding them in an unsupervised fashion.

The intuition is that good topics will have the property that the com-
mon words for the topic (ignoring stop-words) should co-occur in the same
documents. Here is a a formula that rewards exactly that:

M∑
m=2

m−1∑
l=1

log
D(wm, wl) + 1

D(wl)
(5.8)

Here D(wm, wl) is the number of documents in the corpus in which both
words wm and wl occur, while D(wm) is the number of documents in which
wm occurs. The plus one in the numerator ensures that we do not take log
of zero in the case where wm and wl occur in the same document. The two
summations cause the inner computation to be done for each pair of the most
important M words for the topic. In Figure 5.1 we showed twenty words for
each topic, so we might similarly take M = 20. By “most important” we
can use either those words which score highly by viture of being the most
common for the topic, or have a high p(w|t) according to Equation 5.3.

Here are four topics from the same data-set used in Figure 5.1. This time
we give two of the highest scoring classes and two of the lowest according to

DRAFT of 27 January, 2016, page 143

144 CHAPTER 5. TOPIC MODELS, PLSA, AND GIBBS SAMPLING

Equation 5.8. The rankings definitely correspond to our intuitions in that
the high scores have clear topics (middle east and d-day (in World-War II)),
while the low ones do not make any sense at all.

-41.8065 israel palestinian israeli west gaza arafat
police authority jewish palestinians

-47.3765 d-day normandy movie invasion beach allied
june war troops battle

-92.4302 day going optional began reading left rome
center street campaign

-101.072 video public trim real sense fall robert james
baby author

5.5.1 Tree-Substitution Grammar

We have just seen two inference mechanisms that allow a program to infer
topic-model parameters from data, one using EM, a second using Gibbs
sampling. In this section we are going to look at a second problem where
Gibbs is appropriate, but in this case EM is not available as a reasonable
alternative.

A tree-substitution grammar (TSG) is a grammar formalism closely re-
lated to probabilistic context-free grammars. The difference is that the rules
of a context-free grammar are of the form T → (T ∪N)+, whereas in a TSG
the right-hand side of a rule may be any tree fragment. Viewed slightly
differently, context-free grammar rules are tree fragments consisting of a
phrasal category and its immediate children. In Section 4.2.2 we referred
to these as “local trees.” That is, we can view the rule S → NP VP as
the tree fragment (S NP VP), and NP → DT JJ NN as (NP DT JJ NN).
But while in a CFG the fragment only contains the immediate children, in
a TSG it many be of arbitrary depth. For example, (VP (VB talk) (PP (IN
about) NP)) would represent a TSG rule in which a VP is expanded into
the verb “talk”, and a prepositional phrase in which there is the preposition
“about”, followed by a noun-phrase. To put it another way, this one TSG
rule corresponds to the application of three CFG rules: (VP VB PP), (VB
talk), and (IN about).

In Chapter 4 we used the Penn Treebank to create a PCFG by reading
off all of the local trees, counting how often each was used, and then getting
the maximum likelihood estimate by dividing by how many local trees there
were for the non-terminal category in question. This will not work for TSGs.
For starters, consider a parse tree with, say, forty non-terminal symbols.
Naturally, if we are using this to create a CFG, this corresponds to forty

DRAFT of 27 January, 2016, page 144

5.5. TOPIC-MODEL EVALUATION 145

Figure 5.3: Two ways of breaking up the parse tree for “They talk about
the economy”

CFG rules, one for each local tree. How many possible TSG rules are there?
The answer is close to 240. That is approximately 1012, way to many to
store. (Every computer science student should be aware that 210 ≈ 103.)

They way to see how 40 becomes 240 is to visualize a general way to
break a tree into rules. In Figure 5.3 we have the parse tree for the sentence
“They talk about the economy” broken up two different ways. Each non-
terminal node is labeled either “B” (for “break here”) or “N” (for “no break
here”). We now create grammar rules in the following fashion: for every
non-terminal labeled “B”, create a tree fragment (i.e., a rule) consisting, of
it, all of its children until you encounter another B. In the tree on the left
of Figure 5.3, all of the children will be labeled B, so the fragment stops
immediately with just the local children, giving us a CFG. In the tree on
the right the non-terminals VP, VB, and IN are instead labeled “N”, so
we instead get the fragment (VP (VB talk) (PP (IN about) NP)). There
are something like 240 possibilities because every non-terminal node can be
labeled in two ways, and most such combinations of labeling will lead to
different fragments.

We emphasized the 240 figure because it implies that the EM algorithm
as we have been using it us not practical here. Keeping track of the expected
counts over all tree fragments is too expensive.

Now consider a Gibbs sampling inference algorithm for inferring a TSG.
It will start by randomly creating tree fragments over the entire tree-bank.
We do this by looking at each non-terminal node in each tree (except root
nodes) and assigning it either a B or N value randomly with probabilities
p and 1 − p (p = /frac12) is as good as any. We then resample each non-
terminal until convergence. As before, we remove the node from our counts,
decide if we should label it B or N according to some distribution (to be
discussed in a second) and then modify the counts to reflect the new TSG
grammar.

Example 5.5: Suppose random assignment of break points gave us the left-hand-
side tree in Figure 5.3, and we are resampling the node VB. Since this node is part
of two current fragments (VP VB PP) and (VB talk), we decrement the counts of
each of these. On the other hand, the state of the sampler had the right-hand side
tree as the current assignment for the VB node, removing it from consideration
would decrement the count of (VP (VB talk) PP).

The probability of a tree fragment t = (X ...) where X is non-terminal

DRAFT of 27 January, 2016, page 145

146 CHAPTER 5. TOPIC MODELS, PLSA, AND GIBBS SAMPLING

that heads the tree, is

P(t) =
nt(c

−) + αP0(t)

nX + α
(5.9)

Ignoring P0(t) for the moment, this is pretty much a smoothed probability
for the tree t. The first terms in the numerator and denominator would by
themselves give us the maximum likelihood estimation for this fragment, the
number of times the fragment occurs, divided by the number of fragment
tokens in the entire treebank with the same left-hand side, X.

P0(t) is a base probability for building up any fragment out of context-
free grammar rules. So the probability for building (VP (VB talk) PP) is
the CFG probability for (VP VB PP), times (1−β) as the probability of not
splitting at VB, times the CVG probability of (VB talk), β, the probability
of splitting at PP.

When we sample at a non-terminal node n, we compare the probabilities
of having a single tree (unsplit at this node), versus two trees, the tree that
has n as a leaf, and the one that has it as the root, and if, say, the program
chooses to split, then both the parent and child tree counts are incremented
by one.

The point of all this is that at no point in this algorithm is it necessary
to consider all possible tree fragments. So again, consider a tree-bank tree
with forty non-terminal nodes (plus the root node). When we randomly
assigns splits, the number of fragments will be ≤ 40, not 240. Later when
we resample, there are only three tree fragments to look at, the parent
fragment, the child fragment, and the combined fragment. So the Gibbs
sampling algorithm for this problem is quite feasible.

The resulting grammars tend to have multilevel fragments that capture
regularities that CFGs cannot express. Our running example here — (VP
(VB talk) (PP (IN about) NP)) — is an example of a verb case frame, how
a verb combines with other constituents to form it’s meaning. Here, how
the verb “talk” specifies the “topic” of the talking. Some other case frames
found when you run the Gibbs sampler over the Penn Treebank are:

1. (VP (VB talk) (PP TO NP)) “They talk to each other”

2. (VP (VB broke) (PP (IN into) NP)) “He broke into the building”

3. (VP (VB throw) NP (PP (IN into) NP)) “They throw the ball into
the ring”

4. (VP (VB transform) NP (PP (IN into) NP)) “She can transform paper
into art”

DRAFT of 27 January, 2016, page 146

5.6. PROGRAMMING ASSIGNMENT 147

5. (VP (VB prevent) NP (PP (IN from) (S VP))) “He will prevent the
water from entering”

6. (VP (VB protect) NP (PP (IN from) NP)) “She will protect the dog
from harm”

While we have been discussing TSGs because they showcase an advan-
tage of Gibbs sampling, they also relate to the more general topic of this
chapter, meaning. We said language must build the meaning of the whole
from the meanings of the parts. Verb case frames remind us that the pieces
of language that have meaning are often not individual words (what is the
meaning of “from” in the above examples?) but instead words combined in
particular ways. Furthermore, the combinations that most naturally relate
to meaning often seem to span multiple levels of tree structure. TSGs are
one way to begin finding these combinations.

5.6 Programming assignment

The data for this assignment is in news1000.txt The format of the file is as
follows:

Ld
w1 w2 . . . w12

w13 . . . w24

. . . wLd

This is repeated 1000 times, once for each news article d. Ld is the length
of the article. The words are all of the words in the articles that (a) appear
at least 5 times and in two different articles, and (b) do not appear in a
stopword list of common non-topical words.

Your assignment is to create a Gibbs sampling model with 50 topics.
To keep things simple, don’t worry to much about the value of α. A value
of 0.5 should work well. As for the number if iterations C, 10 should be a
reasonably good value.

To demonstrate that your program works it should output the following
facts:

1. The log likelihood of the data at convergence. (We will define conver-
gence as the point where the log-likelihood changes by less than 1%
between one iteration and the next.)

DRAFT of 27 January, 2016, page 147

148 CHAPTER 5. TOPIC MODELS, PLSA, AND GIBBS SAMPLING

2. the probabilities of topics for the 17th article (as a cross check, it has
367 words).

3. the most probable 15 words w for each topic t according to the follow-
ing formula:

P̃(t | w) =
nt,w + θ

n◦,w +Nθ

Set θ = 5.

5.7 Exercises

Exercise 5.1: In Equation 5.1 we ignored the issue of how many words
were in each document (because is it unrelated to the question of topic).
Give a version that explicitly models this aspect of the corpus.

Exercise 5.2: In our PLSA algorithm we did not pick all of the docu-
ment/topic probabilities equal (e.g., 1

50), but instead randomly made them
slightly larger or smaller. Could we make them all equal and instead ran-
domize the word/topic probabilities? Explain.

Exercise 5.3: Explain the logic of displaying words that score highly for
a topic according to Equation 5.3. In particular, discuss how the words
displayed change as θ goes from 0 to some very large number.

Exercise 5.4: We saw that topics with higher values for Equation 5.8 look
better than those with low values. This poses the question, why bother
with topic modeling at all, and simply write programs that maximize that
equation. Unfortunately this measure is very easy to “game” — to produce
meaninglessly high scores for topic collections that are useless. Suppose
you have implemented either of our models, as well as written the code for
Equation 5.8. Suggest some small change to the algorithm or variables (or
a new algorithm) that will dramatically increase the average coherence, but
make the model a “joke.”

DRAFT of 27 January, 2016, page 148

