
Introduction to Deep Learning

Eugene Charniak

2

Contents

1 Feed-Forward Neural Nets 5
1.1 Perceptrons . 7
1.2 Cross-entropy Loss functions for Neural Net 11
1.3 Derivatives and Stochastic Gradient Decent 16
1.4 Writing our Program . 20
1.5 Matrix Representation of Neural Nets 23

2 Tensorflow 27
2.1 Tensorflow Preliminaries . 27
2.2 A TF Program . 30
2.3 Multi-layered NNs . 34

3 Word Embeddings and Language Models 37
3.1 Word Embeddings for Language Models 37
3.2 Building Language Models . 41

3

4 CONTENTS

Chapter 1

Feed-Forward Neural Nets

It is standard to start one’s exploration of deep learning (or neural nets,
we use the terms interchangeably) with their use in computer vision. This
area of artificial intelligence has been revolutionized by the technique and
its basic starting point — light intensity — is naturally represented by real
numbers, which is what neural nets manipulate.

To make this more concrete, consider the problem of identifying hand
written digits — the numbers from zero to nine. If we were to start from
scratch we would first need to build a camera to focus light rays in order
to build up an image of what we see. We would then need light-sensors to
turn the light-rays into electrical impulses that a computer can “sense.” And
finally, since we are dealing with digital computers, we need to discretize the
image. That is, represent the colors and intensities of the light as numbers
in a two-dimensional array. Fortunately we have a dataset on line in which
all this has been done for us — the Mnist data (pronounced ”em-nist”) In
this data each image is at 28 by 28 of integers as in Figure 1.1 (We have
removed the left and right border regions to make it fit better on the page.)

In Figure 1.1, 0 indicates white, 255 is black, and numbers in between
are shades of grey. We call these numbers pixel values where a pixel is
the smallest portion of an image that our computer can resolve. The actual
“size” of the area in the world represented by a pixel depends on our camera,
how far away it is from the object surface etc. But for our simple digit
problem we need not worry about this.

Looking at this image closely can suggest some simpleminded ways we
might go about our task. For example, notice that the pixel in position
[8, 8] is dark. Given the shape of a ’7’ this is quite reasonable. Similarly
sevens will often have a light patch in the middle – i.e. pixel [13, 13] has a

5

6 CHAPTER 1. FEED-FORWARD NEURAL NETS

7 8 9 10 11 12 13 14 15 16 17 18 19 20
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 185 159 151 60 36 0 0 0 0 0 0 0 0 0
8 254 254 254 254 241 198 198 198 198 198 198 198 198 170
9 114 72 114 163 227 254 225 254 254 254 250 229 254 254
10 0 0 0 0 17 66 14 67 67 67 59 21 236 254
11 0 0 0 0 0 0 0 0 0 0 0 83 253 209
12 0 0 0 0 0 0 0 0 0 0 22 233 255 83
13 0 0 0 0 0 0 0 0 0 0 129 254 238 44
14 0 0 0 0 0 0 0 0 0 59 249 254 62 0
15 0 0 0 0 0 0 0 0 0 133 254 187 5 0
16 0 0 0 0 0 0 0 0 9 205 248 58 0 0
17 0 0 0 0 0 0 0 0 126 254 182 0 0 0
18 0 0 0 0 0 0 0 75 251 240 57 0 0 0
19 0 0 0 0 0 0 19 221 254 166 0 0 0 0
20 0 0 0 0 0 3 203 254 219 35 0 0 0 0
21 0 0 0 0 0 38 254 254 77 0 0 0 0 0
22 0 0 0 0 31 224 254 115 1 0 0 0 0 0
23 0 0 0 0 133 254 254 52 0 0 0 0 0 0
24 0 0 0 61 242 254 254 52 0 0 0 0 0 0
25 0 0 0 121 254 254 219 40 0 0 0 0 0 0
26 0 0 0 121 254 207 18 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 1.1: An Mnist discretized version of an image

zero for its intensity value. Contrast this with the number ’1’, which often
has the opposite values for these two positions since a standard drawing of
the number does not occupy the upper left-hand corner, but does fill the
exact middle. With a little though we could think of a lot of heuristics
(rules that often work, but may not always). such as those, and then write
a classification program using them.

However, this is not what we are going to do since in this book we are
concentrating on machine learning. That is, we approach tasks by asking
how we can enable a computer to learn by giving it examples along with the
correct answer. In this case we want our program to learn how to identify
28x28 images of digits by giving examples of them along with the answers
(also called labels).

Once we have abstracted away the details of dealing with the world of
light rays and surfaces we are left with a classification problem — given a
set of inputs (often called features) identify (or classify) the entity which
gave rise to those inputs (or has those features) as one of a finite number
of alternatives. In our case the inputs are pixels, and the classification is
into ten possibilities. We denote the vector of l inputs (pixels) as x =
[x1, x2 . . . xl] and the answer is a. In general the inputs are real numbers,
and may be both positive and negative, though in our case they are all
positive integers.

1.1. PERCEPTRONS 7

Σ

Figure 1.2: Schematic diagram of a perceptron

Figure 1.3: A typical neuron

1.1 Perceptrons

We start, however, with a simpler mechanism for a simpler problem. We
create a program to decide if an image is a zero, or not a zero. This is a
binary classification problem. One of the earliest machine learning schemes
for binary classification is the perceptron, shown in Figure 1.2.

Perceptrons were invented as simple computational models of neurons.
A single neuron (see Figure 1.3) typically has many inputs (dendrites), a cell
body, and a single output (the axon). Echoing this, the perceptron takes
many inputs, and has one output. A simple perceptron for deciding if our
28x28 image is of a zero would have 784 inputs, one for each pixel, and one
output. For ease of drawing, the perceptron in Figure 1.2 has five inputs.

A perceptron consists of a vector of weights w = [w1 . . . wm], one for
each input, plus distinguished weight, b, called the bias. We call w and
b the parameters of the perceptron. More generally we use Φ to denote
parameters with φi ∈ Φ the i’th parameter. For a perceptron Φ = {w ∪ b}

With these parameters the perceptron computes the following function

fΦ(x) =

{
1 if b+

∑l
i=1 xiwi > 0

0 otherwise
(1.1)

8 CHAPTER 1. FEED-FORWARD NEURAL NETS

Or in words, we multiply each perceptron input by the weight for that input
and add the bias. If this value is greater than zero we return 1, otherwise
0. Perceptrons, remember, are binary classifiers, so 1 indicates that x is a
member of the class and 0, not a member.

It is standard to define the dot product of two vectors of length l as

x · y =

l∑
i=1

xiwi (1.2)

so we can simplify the perceptron computation as follows

fΦ(x) =

{
1 if b+ w · x > 0

0 otherwise
(1.3)

Elements that compute b+ w ·x are called linear units and as in Figure 1.2
we identify them with a Σ. Also, when we discuss adjusting the features it
is useful to recast the bias as another weight in w, one who’s feature value
is always 1. (This way we only need to talk about adjusting the w’s.)

We care about perceptrons because there is a remarkably simple and
robust algorithm (the perceptron algorithm) for finding these Φ given training
examples. We indicate which example we are discussing with a superscript.
So the input for the k’th example is xk = [xk1 . . . x

k
l] and its answer as ak. For

a binary classifier such as a perceptron the answer is a one or zero indicating
membership in the class, or not, When classifying into m classes the answer
would be an integer from 0 to m− 1.

As in all machine-learning research we assume we have at least two, and
preferably three sets of problem examples. The first is the training set. It
is used to adjust the parameters of the model. The second is called the
development set and is used to test the model as we try to improve it. (It is
also referred to as the held-out set or the validation set.) The third is the test
set. Once the model is fixed and (if we are lucky) producing good results, we
then evaluate on the test set examples. This prevents us from accidentally
developing a program that works on the development set, but not on yet
unseen problems. These sets are sometimes called corpora, as in the “test
corpus”. The Mnist data we use is available on the web. The training data
consists of 60,000 images and their correct labels, and the development/test
set has 10,000 images and labels.

The great property of the perceptron algorithm is that if there is a set
of parameter values that enables the perceptron to classify all of the train-
ing set correctly, the algorithm is guaranteed to find it. Unfortunately for

1.1. PERCEPTRONS 9

1. set b and all of the w’s to 0.

2. for N iterations, or until he weights do not change

(a) for each training example xk with answer ak

i. if ak − f(xk) = 0 continue

ii. else for all weights wi, ∆wi = (ak − f(xk))xi

Figure 1.4: The perceptron algorithm

most real world examples there is no such set. On the other hand, even
then perceptrons often work remarkably well in the sense that there will
be parameter settings that label a very high percentage of the examples
correctly.

The algorithm works by iterating over the training set several times,
adjusting the parameters to increase the number of correctly identified ex-
amples. If we get though the training set without any of the parameters
needing to change, we know we have a correct set and we can stop. How-
ever, if there is no such set then they will continue to change forever. To
prevent this we cut off training after N iterations, where N is a system pa-
rameter set by the programmer. Typically N grows with the total number
of parameters to be learned. Henceforth we will be careful to distinguish
between the system parameters Φ, and other numbers associated with our
program that we might otherwise call “parameters”, but are not part of Φ,
such as N , the number of iterations though the training set. We call the lat-
ter meta-parameters. Figure 1.4 gives psuedo-code for this algorithm. Note
the use of ∆x in its standard use as change in x.

The critical lines here are 2(a)i and 2(a)ii. Here ak is either one or zero
indicating if the image is a member of the class (ak = 1) or not. Thus the first
of the two lines says, in effect, if the output of the perceptron is the correct
label, do nothing. The second specifies how to change the weight wi so
that if we were to immediately try this example again the perceptron would
either get it right, or at least get it less wrong, namely add (ak − f(xk))xki
to each parameter wi.

The best way to see that line 2(a)ii does what we want is to go through
the possible things that can happen. Suppose the training example xk is a
member of the class, This means that its label ak = 1. Since we got this
wrong, f(xk) (the output of the perceptron on the k’th training example)
must have been 0, So (ak − f(xk)) = 1 and for all i ∆wi = xi. Since all are

10 CHAPTER 1. FEED-FORWARD NEURAL NETS

pixel values are ≥ 0 the algoriithm will increase the weights, and next time
f(xk) will return a larger value —- it will be “less wrong”. (We leave it as
an exercise for the reader to show that the formula does what we want in the
opposite situation — when the example is not in class, but the perceptron
says that it is.)

With regard to the bias b, we are treating it as a a weight for an imaginary
feature x0 who’s value is always 1 and the above discussion goes through
without modification.

Lets do a small example where we only look at (and adust) the weights
for four pixes, those for pixels [7, 7] (center of top left corner) [7, 14](top
center), [14, 7] and [4, 14]. It is usually convenient to divide the pixel values
to make them come out between zero and one. Assume that our image is a
zero , so (a = 1), and the pixel values for these four locations are .8, .9, .6,
and 0 respectively. Since initially all of our parameters are zero, when we
evaluate f(x) on the first image w ·x+ b = 0, so f(x) = 0, so our image was
classified incorrectly and a(1) − f(x1) = 1. Thus the weight w7,7 becomes
(0 + 0.8 ∗ 1) = 0.8. In the same fashion, the next two wjs become 0.9 and
0.6. The center pixel weight stays zero (because the image value there is
zero). The bias becomes 1.0. Note in particular that if we feed this same
image into the perceptron a second time, with the new weights it would be
correctly classified.

Suppose the next image is not a zero, but rather a one, and the two
center pixels have value one, and the others zero. First b+ w · x = 1 + .8 ∗
0 + .9 ∗ 1 + .6 ∗ 0 + 0 ∗ 1 = 1.9 so f(x) > 0 and the perceptron misclassifies
the example as a zero. Thus f(x) − lx = 0 − 1 = −1 and we adjust each
weight according to Line 2(a)ii. w0,0 and w14,7 are unchanged because the
pixel values are zero, while w7,14 now becomes .9− .9 ∗ 1 = 0 (the previous
value minus the weight times the current pixel value). We leave the new
values for b and w14,14 to the reader.

Note that we go through the training data multiple times. Each pass
through the data is called an epoch. Also, note that the if the training data
is presented to the program in a different order the weights we learn will
be different. Good practice is to randomize the order in which the training
data is presented each epoch. This way we do not tune the model to an
accidental feature of the data, the input order. More seriously a fixed order
may actually decrease our performance. However, for students just coming
to this material for the first time, we can give ourselves some latitude here
and omit this niceity.

We can extend perceptrons to multi-class decision problems by creating
not one perception, but one for each class we want to recognize. For our

1.2. CROSS-ENTROPY LOSS FUNCTIONS FOR NEURAL NET 11

Σ

Σ

Σ

Figure 1.5: Multiple perceptrons for identification of multiple classes

original ten digit problem we would have ten, one for each digit, and then
return the class who’s perceptron value is the highest. Graphically this is
shown in Figure 1.6. where we show 3 perceptrons for identifying an image
as being of one of three classes of objects.

While Figure 1.6 looks very interconnected, in actuality this is simply
three separate perceptrons which share the same inputs. Each perceptron
is trained independently from the others, using exactly the same algorithm
shown earlier. So given an image and label we run the perceptron algorithm
step (a) ten times for the ten perceptrons. If the label is, say, five, the zero
to fourth perceptrons will be expected to return zero (and their weights
changed if they do not), the fifth will be trained to return one, and the sixth
through ninth to also return zero.

1.2 Cross-entropy Loss functions for Neural Net

In their infancy, a discussion of neural nets (we henceforth abbreviate as NN)
would be accompanied by diagrams much like that in Figure 1.6 with the
stress on individual computing elements (the linear units). These days we
expect the number of such elements to be large so we talk of the computation
in terms of layers — a group of storage or computational units which can
be thought of as working in parallel and then passing values on to another

12 CHAPTER 1. FEED-FORWARD NEURAL NETS

∑

Figure 1.6: NN showing layers

layer. Figure 1.5 is a revised version of Figure 1.6 that emphasizes this view.
It shows an input layer feeding into a computational layer.

Implicit in the “layer” language is the idea that there may be many of
them, each feeding into the next. This is so, and this piling of layers is the
“deep” in “deep learning”.

Multiple layers, however, do not work well with perceptrons, so we need
another method of learning how to change weights. In this section we con-
sider how to do this in the next simplest network configuration, feed forward
neural networks and a relatively simple learning technique, gradient decent

Before we can talk about gradient decent,however, we first need to dis-
cuss loss functions. A loss function is a function from an outcome to how
”bad” the outcome is for us. When learning model parameters our goal is
to minimize loss. The loss function for perceptrons has the value zero if
we got a training example correct, one if was incorrect. This is known as
a zero-one loss. Zero-one loss has the advantage of being pretty obvious,
so obvious that we never bothered to justify their use. However, they have
disadvantages. In particular they do not work well with gradient decent
learning where the basic idea is to modify a parameter according to the rule

∆φi = −L ∂L
∂φi

(1.4)

Here L is the learning rate, a real number that scales how much we

1.2. CROSS-ENTROPY LOSS FUNCTIONS FOR NEURAL NET 13

1 2 3

Figure 1.7: Loss as a function of φ1

change a parameter at a given time. The important part is the partial
derivative of the loss L with respect to the parameter we are adjusting. Or
to put it another way, If we can find how the loss is affected by the parameter
in question, we should change the parameter to decrease the loss (thus the
minus sign preceding L) In our perceptron, or more generally in NNs, the
outcome is determined by Φ, the model parameters, so in such models the
loss is a a function L(Φ).

To make this easy to visualize, suppose our perceptron has only two
parameters. Then we can think of a Euclidian plane, with two axes, φ1 and
φ2 and for every point in the plane the value of the loss function hanging
over (or under) the point. Say our current values for the parameters are 1.0
and 2.2 respectively. Look at the plane at position (1,2.2) and observe how
L behaves at that point. Figure 1.7 shows a slice along the plane φ2 = 2.2
showing how an imaginary loss behaves as a function of φ1. Look at the loss
when φ1 = 1. We see that the tangent line has a slope of about −1

2 If the
learning rate L = .5 then Equation 1.4 tells us to add (−.5) ∗ (−1

2) = .25
That is, move about .25 units to the right, which indeed decreases the loss.

For Equation 1.4 to work the loss has to be a differentiable function of
the parameters, which the zero-one loss is not. To see this, imagine a graph
of the number of mistakes we will make as a function of some parameter,
φ. Say we just evaluated our perceptron on an example, and got it wrong.

14 CHAPTER 1. FEED-FORWARD NEURAL NETS

Well, if, say, we keep increasing φ (or perhaps decrease it) and we do it
enough, eventually f(x) will change its value, and we will get the example
correct. So when we look at the graph we see a step function. But step
functions are not differentiable.

There are, however, other loss functions. The most popular, the closest
thing to a “standard” loss function, is the cross-entropy loss function. In this
section we explain what this is, and how our network is going to compute
it. The subsequent section uses it for parameter learning.

Currently our network of Figure 1.5 outputs a vector of values, one for
each linear unit, and we choose the class with the highest output value. We
are now going to change our network so that the numbers output are (an
estimate of) the probability distribution over classes. In our case the prob-
ability that the correct class random variable C = c for c ∈ [0, 1, 2, . . . , 9].
A probability distribution is a set of non-negative numbers that sum to one.
Currently our network outputs numbers, but they are generally both pos-
itive and negative. Fortunately there is a convenient function for turning
sets of numbers into probability distributions, softmax.

σ(x)j =
exj∑
i e

xi
(1.5)

Sofmax is guaranteed to return a probability distribution because even if
x is negative ex is positive, and the values sum to one because the de-
nominator sums over all possible values of the numerator. For example
σ([−1, 0, 1]) ≈ [0.09, 0.244, 0.665] A special case that we will refer to in our
further discussion is when all of the NN outputs into softmax are zero.
e0 = 1, so if there are ten option all of them receive probability 1

10 which
naturally generalizes to 1

n if there are n options.
Figure 1.8 shows a network with a softmax layer added in. As before the

numbers coming in on the left are the image pixel values, however now the
numbers going out on the right are class probabilities. It is also useful to
have a name for the numbers leaving the linear units and going into the soft-
max function. These are typically called logits — a term for un-normalized
numbers that we are about to turn into probabilities using softmax. We use
l to denote the vector of logits (one for each class).

Now we are in a position to define our cross-entropy loss function (X)

X(Φ, x) = − ln pΦ(ax) (1.6)

The cross entropy loss for an example x is the negative log probability as-
signed to x’s label .

1.2. CROSS-ENTROPY LOSS FUNCTIONS FOR NEURAL NET 15

∑ σ

Figure 1.8: A simple network with a softmax layer

Let’s see why this is reasonable. First, it goes in the right direction. If X
is a loss function, it should increase as our model gets worse. Well, a model
that is improving should assign higher and higher probability to the correct
answer. So we put a minus sign in front so that the number gets smaller as
the probability gets higher. Next, the log of a number increases/decreases
as the number does. So indeed, X(Φ, x) is larger for bad parameters than
for good ones.

But why put in the log? We are use to thinking of logarithms as shrink-
ing distances between numbers. The difference between log(10,000) and
log(1,000) is 1. One would think that would be a bad property for a loss
function. It would make bad situations look less bad. But this character-
ization of logarithms is misleading. It is true as x gets larger log x does
not increase to the same degree, But consider the graph of -ln(x) in Figure
1.9. As x goes to zero, changes in the logarithm are much larger than the
changes to x. And since we are dealing with probabilities, this is the region
we care about.

As for why this function is called cross-entropy loss, in information the-
ory there is a property of probability distributions called their cross-entopy
and our function X is computing an estimate of this number. However we
will not have need to go deeper into information theory in this book, so we
leave it with this shallow explanation.

16 CHAPTER 1. FEED-FORWARD NEURAL NETS

1 2 3

1

2

0

Figure 1.9: Graph of -ln(x)

1.3 Derivatives and Stochastic Gradient Decent

We now have our loss function and we can compute it using the following
equations:

X(Φ, x) = − ln p(a) (1.7)

p(a) = σa(l) =
ela∑
i e

li
(1.8)

lj = bj + x ·wj (1.9)

We first compute the logits l from Equation 1.9. These are then used by
the softmax layer to compute the probabilities (Equation 1.8) and then we
computer the loss, the negative natural-logarithm of the probability of the
correct answer (Equation 1.7). Note that previously the weights for a linear
unit were denoted as w. Now we have many such units and so wj are the
weights for the j’th unit, and bj is its bias.

This process, going from input to the loss, is called the forward pass of
the learning algorithm, and it computes the values that are going to be used
in the backward pass — the weight adjustment pass. This method is called
gradient decent because we are looking at the slope of the loss function (its
gradient), and then having the system lower its loss (desend) by following
the gradient.

1.3. DERIVATIVES AND STOCHASTIC GRADIENT DECENT 17

Let’s start by looking at the simplest case of gradient estimation, that for
one of the biases, bj . We can see from Equations 1.7-1.9 that bj changes loss
by first changing the value of the logit lj , which then changes the probability
and hence the loss. Let’s take this in steps. (In this we are only consider-
ing the error induced by a single training example, so we write X(Φ, x) as
X(Φ)).) First:

∂X(Φ)

∂bj
=
∂li
∂bj

∂X(Φ)

∂lj
(1.10)

This uses the chain rule to say the first part of the above comment — changes
in bj cause changes in X in virtue of the changes they induce in the logit lj .

Look now at the first partial derivative on the right in Equation 1.10.
It’s value, is, in fact, just 1

∂li
∂bj

=
∂

∂bj
(bj +

∑
i

xiwj,i) = 1 (1.11)

where wj,i is the i’th weight of the j’th linear unit. Since the only thing in
bj +

∑
i xiwi,i that changes as a function of bj is bj itself, the derivative is 1.

We next consider how X changes as a function of lj :

∂X(Φ)

∂lj
=
∂pa
∂lj

∂X(φ)

∂pc
(1.12)

where pi is the probability assigned to class i by the nettwork. So this says
that since X is only dependent on the probability of the correct answer, lj
only affects X by changing this probability. In turn,

∂X(φ)

∂pa
=

∂

∂pa
(− ln pa) = − 1

pa
(1.13)

(From basic calculus.)

This leaves one term yet to evaluate.

∂pa
∂lj

=
∂σa(l)

∂lj
=

{
(1− pj)pa a = j

−pjpa a 6= j
(1.14)

The first equality of Equation 1.14 comes from the fact that we get our
probabilities by computing softmax on the logits. The second equality comes
from Wikipedia. The derivation requires careful manipulation of terms and
we will not carry it out. However we can make it seems reasonable. We

18 CHAPTER 1. FEED-FORWARD NEURAL NETS

are asking how changes in the logit lj is going to effect the probability that
comes out of softmax. Reminding ourselves that

σa(l) =
ela∑
i e

li

it makes sense that there are two cases, Suppose the logit we are varying
(j) is not equal to a. That is, suppose this is a picture of a 6, but we are
asking about the bias that determines logit 8. In this case lj only appears
in the denominator, and the derivative should be negative (or zero) since
the larger lj , the smaller pa. This is the second case in Equation 1.14, and
sure enough, this case produces a number less than or equal to zero since
the two probabilities we multiply cannot be negative.

On the other hand, if j = a, then lj appears in both the numerator
and denominator. Its appearance in the denominator will tend to decrease
the output, but in this case it is more than offset by the increase in the
numerator. Thus for this case we expect a positive (or zero) derivative and
this is what the first case of Equation 1.14 delivers.

With this result in hand we can now derive the equation for modifying
the bias parameters bj . Substituting Equations 1.13 and 1.14 into Equation
1.12 gives us:

∂X(Φ)

∂lj
= − 1

pa

{
(1− pj)pa a = j

−pjpa a 6= j
(1.15)

=

{
−(1− pj) a = j

pj a 6= j
(1.16)

The rest is pretty simple. We noted in Equation 1.10 that

∂X(Φ)

∂bj
=
∂li
∂bj

∂X(Φ)

∂lj

and then that the first of the derivatives on the right has value one, So the
derivative of the loss with respect to bj is given by Equation 1.12. Lastly,
using the rule for changing weights (Equation 1.10), we get the rule for
updating the NN bias parameters:

∆bj = L

{
(1− pj) a = j

−pj a 6= j
(1.17)

The equation for changing weight parameters (as opposed to bias) is a
minor variation of Equation 1.17. The corresponding equation to Equation

1.3. DERIVATIVES AND STOCHASTIC GRADIENT DECENT 19

1.10 for weiights is:
∂X(Φ)

∂bj,i
=

∂lj
∂wj

∂X(Φ)

∂lj
(1.18)

First note that the right-most derivative is the same as in 1.10. This means
that during the weight adjustment phase we should save this result when
we are doing the bias changes to reuse here. The first of the two derivatives
on the right evaluates to

∂X(Φ)

∂wj,i
=

∂

∂wj,i
(bj + (wj,1x1 + . . .+ wj,ixi + . . .)) = xi (1.19)

(If we had taken to heart the idea that a bias is? simply a weight who’s
corresponding feature value is always one we could have just derived this
equation, and then Equation 1.11 would have followed immediately from
1.19 when applied to this new pseudo weight.)

Using this result we get our equation for weight updates

∆wj,i = −Lxi
∂X(Φ)

∂lj
(1.20)

We have now derived how the parameters of our model should be ad-
justed in light of a single training example. The gradient decent algo-
rithm would then have us go thought all of the training examples recording
how each would recommend moving the parameter values, but not actually
changing them until we have made a complete pass through all of them. At
this point we modify each parameter by the sum of the changes from the
individual examples.

The problem here is that this algorithm can be very slow, particularly if
training set is large. We typically need to adjust the parameters often since
they are going to interact in different ways as each increase and decreases as
the result of particular test examples. Thus in practice we almost never use
gradient decent, but rather stochastic gradient decent in which updates the
parameters every m examples, for m much less that the size of the training
set. A typical m might be twenty. This is called the batch size.

In general the smaller the batch size, the smaller the learning rate L
should be set. The idea is that any one example is going to push the weights
toward classifying that example correctly at the expense of the others. If the
learning rate is low, this will not matter that much, since the changes made
to the parameters are correspondingly small. Conversely, with larger batch-
size we are implicitly averaging over m different examples so the dangers
of tilting parameters to the idiosyncrasies of one example are lessened and
changes made to the parameters can be larger.

20 CHAPTER 1. FEED-FORWARD NEURAL NETS

1. for j from 0 to 9 set bj randomly (but close to zero)

2. for j from 0 to 9 and for i from 0 to 783 set wj,i similarly

3. until development accuracy stops increasing

(a) for each training example k in batches of m examples

i. do the forward pass using Equations 1.7 1.8, and 1.9

ii. do the backward pass using Equations 1.20, 1.17, and 1.12

iii. every m examples, modify all Φ’s with the summed updates

(b) compute the accuracy of the model by running the forward pass
on all examples in the development corpus

4. output the Φ from the iteration before the decrease in development
accuracy.

Figure 1.10: Pseudo code for simple feed-forward digit recognition

1.4 Writing our Program

We now have the broad sweep of our first NN program. The pseudo code
is in Figure 1.10. Starting from the top, the first thing we do is initialize
the model parameters. Sometimes it is fine to initialize all to zero as we
did in the perceptron algorithm. While this is the case for our current
problem as well, it is not always the case. Thus general good practice is
to set weights randomly but close zero. You might also want to give the
Python random number generator a key so when you are debugging you
aways set the parameters to the same initial values, and thus should get
exactly the same output. (If you do not, Python uses the some numbers
from the environment like the last few digits from the clock as the seed.)

Note that at every iteration of the training we first modify the param-
eters, and then use the model on the development set to see how well the
model performs with its current set of parameters. When we run devel-
opment examples we do not run the backward training pass. If we were
actually going to be using our program for some real purpose (e.g., reading
zip codes on mail) the examples we see are not ones on which we have been
able to train, and thus we want to know how well our program works “in
the wild.” Our development data is an approximation to this situation.

A few pieces of empirical knowledge come in handy here. First, it is

1.4. WRITING OUR PROGRAM 21

common practice to have pixel values, or whatever the input values to the
network may be, not to stray too far from minus one to plus one. In our
case since the original pixel values were 0 to 255, we simply divided them by
255 before using them in our network. One place we can see how this makes
sense is earlier in Equation 1.20 where we saw that the difference between
the equation for adjusting the bias term, and that for a weight coming from
one of the NN inputs, was the later had multiplicative term xi, the value of
the input term. At the time we said that if we had taken our comment that
the bias term was simply a weight term who’s input value was always one,
the equation for updating bias parameters would have fallen out of Equation
1.20. Thus, if we leave the input values unmodified, and one of the pixels
has the value 255, we will modified its weight value 255 times more than we
modify a bias. Given we have no a-priori reason to think one needs more
correction than the other, this seems strange.

Next there is the question of setting L, the learning rate. This can be
tricky. In our implementation we used 0.0001. The first thing to note is
that setting it to large is much worse than too small. If you do this you get
a math overflow error from softmax. Referring again to Equation 1.5 one
of the first things that should strike you are the exponentials in both the
numerator and denominator. Raising e, (≈ 2.7) to a large value is a fool
proof way to get an overflow, which is what we will be doing if any of the
logits get large, which in turn can happen if we have a learning rate that
is too big. Even if an error message does not give you the striking message
that something is amiss, a too high learning rate can cause your program to
wander around in an unprofitable area of the learning curve.

For this reason it is standard practice to observe what happens to the
loss on individual examples as our computation proceeds. Let us start with
what to expect on the very first training image. The numbers go through the
NN and get fed out to the logits layer.. All our weights and biases are zero
plus or minus a small bit (which I will often refer to as jitter) This means
all of the logit values are very close to zero, so all of the probabilities will
be very close to 1

10 . (See the discussion on page 14) The loss is minus the
natural log of the probability assigned to the correct answer, − ln(1

10) ≈ 2.3
As a general trend we expect individual losses to decline as we train on more
examples. But naturally, some images willl be further from the norm than
others, and thus are classified by the NN with less certainty. Thus we see
individual losses that go higher or lower, and the trend may be difficult to
discern. Thus, rather than print out one loss at a time, we sum all of them
as we go along and print the average avery, say 100 batches. This average
should, decrease in an easily observable fashion, though even here, you may

22 CHAPTER 1. FEED-FORWARD NEURAL NETS

see jitter.

Returning to our discussion of learning rate and the perils of setting it
too high, a learning rate that is too low can really slow down the rate at
which your program converges to a good set of parameters. So staring small
and experimenting with larger values is usually the best course of action.

Because so many parameters are all changing at the same time, NN
algorithms can be hard to debug. As with all debugging the trick is to change
as few things as possible before the bug manifests itself. First remember the
point that when we modify weights, if you were to immediate run the same
training example a second time, the loss will be less. If this is not true then
either there is a bug, or you set the learning rate too high. Second remember
that it is not necessary to change all of the weights to see the loss decrease.
You can change just one of them, or one group of them. For example, when
you first run the algorithm only change the biases. (However, if you think
about it, a bias in a one layer network is mostly going to capture the fact
that different classes occur with different frequencies. This does not happen
much in the Mnist data, so we do not get much improvement by just leaning
biases in this case.)

If your program is working correctly you should get an accuracy on the
development data of about 91% or 92%. This is not very good for this task.
In later chapters we see how to achieve about 99%. But it is a start.

One nice thing about really simple NNs that that sometimes we can
directly interpret the values of individual parameters and decide if they are
reasonable or not. You may remember in our discussion of Figure 1.1, we
noted that the pixel (8,8) was dark — it had a pixel value of 254. We
commented that this was somewhat diagnostic of images of the digit 7,
as opposed to, for example, the digit 1, which would not normally have
markings in the upper-left-hand corner. We can turn this observation into
a prediction about values in our weight matrix wi,j , where i is the pixel
number and j is the answer value. If the pixel values go from 0 to 784, then
the position (8,8) would be pixel 8 · 28 + 8 = 232, and the weight connecting
it to the answer 7 (the correct answer) would be w232,7 while that connecting
it to 1 would be w232,1. You should make sure you see that this now suggests
that w232,7 should be larger than w232,1. We ran our program several times
with low variance random initialization of our weights. In each case the
former number was positive (e.g., .25) while the second was negative (e.g.,
-.17).

1.5. MATRIX REPRESENTATION OF NEURAL NETS 23

1.5 Matrix Representation of Neural Nets

Linear Algebra gives us another way to represent what is going on in a NN
— using matrices. A matrix is a two dimensional array of elements. In our
case these elements will be real numbers. The dimensions of a matrix are
the number of rows and columns respectively. So a l by m matrix looks like
this:

X =

x1,1 x1,2 . . . x1,m

x2,1 x2,2 . . . x2,m

. . .
xl,1 xl,2 . . . xl,m

 (1.21)

The primary operations on matricies are addition and multiplication.
Addition of two matrices (which must be of the same dimensions) is element-
wise. That is if we add two matrices, X = Y + Z then xi,j = yi,j + zi,j

Multiplication of two matricies X = YZ is defined when Y has dimen-
sions l and m and those of Z are m and n. The result is a matrix of size l
by n, where:

xi,j =
k=m∑
k=1

yi,kzk,j (1.22)

As a quick example,

(
1 2

)(1 2 3
4 5 6

)
+
(

7 8 9
)

=
(

9 12 15
)

+
(

7 8 9
)

=
(

16 20 24
)

We can use this combination of matrix multiplication and addition to
define the operation of our linear units. In particular the input features are
a 1xl matrix X. In the digit problem l = 784. The weights on for the units
are W where wi,j is the i’th weight for unit j. So the dimension of W are
the number of pixels by the number of digits, 784x10. B is a 1x10 matrix
of biases, and

L = XW + B (1.23)

where L is a 1x10 matrix of logits. It is a good habit when first seeing an
equation like this to make sure the dimensions work. In this case we have
(1x10). = (1x784)(784x10) + (1x10)

We can also express the backward pass more compactly. First, we define

∇lX(Φ) =

(
∂X(Φ)

∂l1
. . .

∂X(Φ)

∂lm

)
(1.24)

24 CHAPTER 1. FEED-FORWARD NEURAL NETS

The inverted triange, ∇xf(x) denotes a vector created by taking the partial
derivative of f with respect to all of the values in x It is called the gradient
operator. Previously we just talked about the partial derivative with respect
to individual lj . Here we define the derivative with respect to all of l as the
vector of individual derivatives. We also remind the reader of the transform
of a matrix — making the rows of the matrix into columns, and vice versa.

x1,1 x1,2 . . . x1,m

x2,1 x2,2 . . . x2,m

. . .
xl,1 xl,2 . . . xl,m

T

=

x1,1 x2,1 . . . xl,1
x1,2 x2,2 . . . xl,2

. . .
x1,m x2,m . . . xl,m

 (1.25)

With these we can rewrite Equation 1.20 as

∆W = −LXT∇lX(Φ) (1.26)

On the right we are multiplying a 784 by 1 times a 1 by 10 matrix to get a
784 by 10 matrix of changes to the 784 by 10 matrix of weights W.

This is an elegant summary of what is going on when the input layer
feeds into the layer of linear units to produce the logits, and then following
the loss derivatives back to the changes in the parameters. But there is also
a practical reason for preferring this new notation. When run with a large
number of linear units, linear algebra in general, and deep learning training
in particular can be very time consuming. However, a great many problems
can be expressed in matrix notation, and many programming languages have
special packages that allow you to program using linear algebra constructs.
Furthermore, these packages are optimized to make them more efficient that
if you had coded them by hand. In particular, if you program in Python it
is well worth using the Numpy package and its matrix operations. Typically
you get an order of magnitude speedup.

Furthermore, one particular application of linear algebra is computer
graphics and its use in game-playing programs. This has resulted in spe-
cialized hardware call graphics processing units or GPUs. GPUs have slow
processors compared to CPUs, but it has a lot of them, along with the soft-
ware to use them efficiently in parallel for linear algebraic computations.
Some specialized languages for NNs (e.g., Tensorflow have built in software
that senses the availability of GPUs and uses them without any change in
code. This typically gives another order of magnitude increase in speed.

There is a yet a third reason for adopting matrix notation in this case.
Both the special purpose software packages (e.g., Numpy) and hardware
(GPUs) are more efficient if we process several training examples in parallel.

1.5. MATRIX REPRESENTATION OF NEURAL NETS 25

Furthermore, this fits with the idea that we want to process some number m
of training examples (the batch size) before we update the model parameters.
To this end, it is common practice to input all m of them to our matrix
processing to run together. In Equation 1.23 we envisioned the image x
as a matrix of size 1x784. This was one training example, with 784 pixels.
We now change this so the matrix has dimensions m by 784. Interestingly,
this almost works without any changes to our processing (and the necessary
changes are already built into, e.g., Numpy and Tensorflow). Let’s see why.

First consider the matrix multiplication XW where now X has m rows
rather than 1. Of course, with one row we get an output of size 1x784. With
m rows the output is m by 784. Furthermore as you might remember from
linear algebra, but in any case can confirm by consulting the definition of
matrix multiplication, the output rows are as if in each case we did multi-
plication of a single row and then stacked them together to get the m by
784 matrix.

Adding on the bias term in the equation does not work out as well. We
said that matrix addition requires both matrices to have the same dimen-
sions. This is no-longer true for Equation 1.23 as XW now has size m by
10, whereas B, the bias terms, has size 1 by 10. This is where the modest
changes come in.

Numpy and Tensorflow have broadcasting. When some operation re-
quires arrays to have particular sizes other than the ones they have, arrays
dimensions can sometimes be adjusted. In particular, when one of the arrays
has dimension, 1 x n and we require m x n, the first will have n (virtual)
copies made of its one row or column so that it is the correct size. This is
exactly what we want here. This makes B, effectively m by 10. So we add
the bias to all of the terms in the m by 10 output from the multiplication.
Remember what we did when this was 1 by 10. Each of the ten were one
possible decision for what the correct answer might be, and we added the
bias to the number for that decision. Now we are doing the same, but for
each possible decision, and all of the m examples we are running in parallel.

26 CHAPTER 1. FEED-FORWARD NEURAL NETS

Chapter 2

Tensorflow

2.1 Tensorflow Preliminaries

Tensorflow is an open-source programming language developed by Google
that is specifically designed to make programming deep learning programs
easy, or at least easier. We start with the traditional first program.

import tensorflow as tf

x = tf.constant("Hello World")

ses = tf.Session()

print(ses.run(x)) #will print out "Hello World"

If this looks like a Python program, that is because it is. In fact Tensorflow
(hense forth TF) is a collection of functions that can be called from inside
different programming languages. The most complete interface is from inside
Python, and that is what we use here.

The next thing to note is that TF functions do not so much execute a
program but rather define a computation that is only executed when we
call the run command, as in the last line of the above program. More
precisely, the TF function Session in the third line creates a session, and
associated with this session is a graph defining a computation. Commands
like constant add elements to this computation. In this case the element is
just constant data item who’s value is the Python string ”Hello World”. As
you might expect, the above program prints out this string.

It is instructive to contrast this behavior with what would have happened
if we replaced the last line with print(x) This will print out

Tensor("Const:0", shape=(), dtype=string)

27

28 CHAPTER 2. TENSORFLOW

The point is that the Python variable ’x’ is not bound to a string, but rather
to a piece of the Tensorflow computation graph. It is only when we evaluate
this portion of the graph by executing ses.run(x) that we access the value
of the TF constant.

So to perhaps belabor the obvious, in the above code ’x’, and ’ses’ are
Python variables, and as such could have been named whatever we wanted.
import and print are Python functions, and must be spelled this way for
Python to understand which function we want executed. Lastly constant,
Session and run are TF commands and again the spelling must be exact
(including the capital ”S” in Session). Also we always first need to import

tensorflow. Since this is fixed we henceforth omit it.
In the following code, as before, x is a python variable, who’s value is a

TF constant, in this case the floating point number 2.0. Next, z is a python
variable who’s value is a TFplaceholder.

x = tf.constant(2.0)

z = tf.placeholder(tf.float32)

ses= tf.Session()

comp=tf.add(x,z)

print(ses.run(comp,feed_dict={z:3.0})) # Prints out 5.0

print(ses.run(comp,feed_dict={z:16.0})) # Prints out 18.0

print(ses.run(x)) # Prints out 2.0

print(ses.run(comp)) # Prints out a very long error message

A placeholder in TF is like the formal variable in a programming language
function. Suppose we had the following python code:

x = 2.0

def sillyAdd(z):

return z+x

print(sillyAdd(3)) # Prints out 5.0

print(sillyAdd(16)) # Prints out 18.0

Here ’z’ is the name of sillyAdd’s argument, and when we call the function
as in sillyAdd(3) it is replaced by its value, 3. The TF version works
similarly, except the way to give TF placeholders a value is different, as seen
in:

print(ses.run(comp,feed_dict={z:3.0}))

Here feed dict is a named argument of run (so it’s name must be spelled
correctly). It takes as possible values Python dictionaries. In the dictionary

2.1. TENSORFLOW PRELIMINARIES 29

each placeholder required by the computation must be given a value. So
the first ses.run prints out the sum of 2.0 and 3.0, and the second 18.0.
The third is there to note that if the computation does not require the
placeholder’s value, then there is no need to supply it. On the other hand,
as the comment on the fourth print statement indicates, if the computation
requires a value and it is not supplied you get an error.

Tensorflow is called Tensorflow because it’s fundamental data-structures
are tensors — typed multi-dimensional arrays. There are fifteen or so tensor
types. Above when we defined the placeholder z we gave its type as a
float32. Along with its type, a tensor has a shape. So consider a two by
three matrix. It has shape [2,3]. A vector of length 4 has shape [4]. (This is
different from a 1 by 4 matrix, which has shape [1,4], or a 4 by 1 matrix who’s
shape is [4,1].) A 3 by 17 by 6 array has shape [3,17,6]. They are all tensors.
Scalers (i.e., numbers) have the null shape, and are tensors as well. Below
we write down a simple Tensorflow program for Mnist digit recognition. The
primary TF program will take an image and run the forward NN pass to
get the networks solution to what digit we are looking at. Also, during
the training phase it will run the backward pass and modify the programs
parameters. To hand the program the image the image we would define a
placeholder. It will be of type float32, and shape [28,28], or possibly [784],
depending if we handed it a two or one dimensional python list. E.g.,

img=tf.placeholder(tf.float32,shape=[28,28])

Note that shape is a named argument of the placeholder function.
One more TF data structure before we dive into a real program. As

noted before, NN models are defined by their parameters and how they are
combined with the input values to produce its answer (the architecture). The
parameters (e.g., the weights w that connect the input image to the answer
logits) are (typically) initialized randomly, and the NN modifies them to
minimize the loss on the training data. There are three stages to creating TF
parameters. First, create a tensor with initial values. Then turn the tensor
into a variable (which is what TF calls parameters) and then initializing
the variables/parameter. For example, let’s create the parameters we need
for the feed-forward Mnist pseudo code in Figure 1.10, First the bias terms
b, then the weights W

bt = tf.random_normal([10], stddev=.1)

b = tf.Variable(bt)

W = tf.Variable(tf.random_normal([784,10],stddev=.1))

ses=tf.Session()

30 CHAPTER 2. TENSORFLOW

ses.run(tf.initialize_all_variables())

print(ses.run(b))

The first line adds an instruction to create a tensor of shape [10] who’s
ten values are random numbers generated from a normal distribution with
standard deviation 0.1. (It has mean 0.0, as this is the default). The second
line takes bt and creates a piece of the TF graph that will create a variable
with the same shape and values. Because we seldom need the original tensor
once we have created the variable, normally we combine the two events
without saving the tensor, as in the third line which creates the parameters
W. Before we can use either b or W we need to initialize them in the session
we have created. This is done in the fifth line. The sixth line prints out
(when we just ran it):

[-0.05206999 0.08943175 -0.09178174 -0.13757218 0.15039739

0.05112269 -0.02723283 -0.02022207 0.12535755 -0.12932496]

If we had reversed the order of the last two lines we would have received an
error message when we attempted to evaluate the variable pointed to by b

in the print command.

Initializing the variables is a separate step because there are other ways
this can occur — most notably, by saving values from a previous run of the
program and reading them in.

So in TF programs we create variables in which we store the model
parameters. Initially their values are uninformative, typically random with
small standard deviation. In line with the previous discussion, the backward
pass of gradient decent will modify them. Once modified, the session (above
pointed to by ses retains the new values, and uses them the next time we
do a run of the session.

2.2 A TF Program

In Figure 2.1 we give an (almost) complete TF program for a feed-forward
NN Mnist program. It should work as written. The key element that you
do not see here is the code mnist.train.next batch, which handles the
details of reading in the Mnist data. Just to orient yourself, everything
before the dashed line is concerned with setting up the TF computation
graph, everything after is using the graph to first training the parameters,
and then run the program to see how accrate it is on the test data. We now
go through this line by line.

2.2. A TF PROGRAM 31

0 import tensorflow as tf

1 from tensorflow.examples.tutorials.mnist import input_data

2 mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

3

4 batchSz=100

5 W = tf.Variable(tf.random_normal([784, 10],stddev=.1))

6 b = tf.Variable(tf.random_normal([10],stddev=.1))

7

8 img=tf.placeholder(tf.float32, [batchSz,784])

9 ans = tf.placeholder(tf.float32, [batchSz, 10])

10

11 prbs = tf.nn.softmax(tf.matmul(img, W) + b)

12 xEnt = tf.reduce_mean(-tf.reduce_sum(ans * tf.log(prbs),

13 reduction_indices=[1]))

14 train = tf.train.GradientDescentOptimizer(0.5).minimize(xEnt)

15 numCorrect= tf.equal(tf.argmax(prbs,1), tf.argmax(ans,1))

16 accuracy = tf.reduce_mean(tf.cast(numCorrect, tf.float32))

17

18 sess = tf.Session()

19 sess.run(tf.initialize_all_variables())

20 #---

21 for i in range(1000):

22 imgs, ans = mnist.train.next_batch(batchSz)

23 sess.run(train, feed_dict={img: imgs, ans: ans})

25 sumAcc=0

26 for i in range(1000):

27 imgs, ans= mnist.test.next_batch(batchsz)

28 sumAcc+=sess.run(accuracy, feed_dict={img: imgs, ans: ans})

29 print "Test Accuracy: %r" % (sumAcc/1000)

?

Figure 2.1: Tensorflow code for a feed forward Mnist NN

32 CHAPTER 2. TENSORFLOW

After importing Tensorflow and the code for reading in Mnist data we
define our two sets of parameters in lines 5 and 6. This is a minor variation
of what we just saw in our discussion of TF variables. Next, we make
placeholders for the data we will be feeding into the NN. First in line 8 we
have the placeholder for the image data. It is a tensor of shape [batchSz,
784]. In our discussion of why linear algebra was a good way to represent NN
compuations (page 24) we noted that our computation is sped up when we
process several examples at the same time, and furthermore, this fit nicely
with the notion of a batch-size in stochastic gradient decent. Here we see
how this plays out in TF. Namely, our placeholder for the image takes not
1 row of 784 pixels, but 100 of them (since this is the value of batchSz).
Simlarly, in line 9 we see that we give the program 100 of the image answers
at a time.

One other point about line 9. We represent an answer by a vector of
length 10 with all values zero except the ath, there a is the correct digit for
that image. For example, we opened the first chapter with an image of a
seven (Figure 1.1). The corresponding representation of the correct answer
is (0,0,0,0,0,0,0,1,0,0). Vectors of this form are called one-hot vectors
because they have the property of selecting only one value to be active

Line 9 finishes with the parameters and inputs of our program and our
code moves on to placing the actual computations in the graph. Line 11 in
particular begins to show the power of TF for NN compuations. It defines
most of the forward NN pass of our model. In particular it specifies that we
want to feed (a batch size of) images into our linear units (as defined by W and
b) and then apply softmax on all of the results to get a vector of probabilities.
We recommended that when looking at code like this it is a good idea to
look at the shapes of the tensors involved to check that they make sense.
Looking at the innermost computation, is a matrix multiplication matmul

of the input images [100,784] times W [784, 10] to give us a matrix of shape
[100,10], to which we add the biases, ending up with a matrix of shape
[100,10]. These are the ten logits for of the 100 image in our batch. We then
pass this through the softmax function and end up with a [100,10] matrix
of label probability assignments for our images.

I am going speed over showing that lines 12 and 13 compute the average
cross entropy loss over the 100 examples we process in parallel. Looking
at the innermost computation ’*’ does element by element multiplication of
two tensors with the same shape. This gives us rows in which everything is
zero’d out except for the log of the probability of the correct answer. Then
reduce sum sums either columns (the default, with reduction index=[0],
or, in this case, it sums over rows, reduction index=[1]. This results in a

2.2. A TF PROGRAM 33

[100,1] array with the log of the correct probability as the only entry in each
row. Finally reduce mean here sums all of the columns (again the default)
and returns the average.

I went thought this quickly because I really want to get to line 14. It is
there that TF really shows its merits as line 14 is the entire backward pass
of our computation.

tf.train.GradientDescentOptimizer(0.5).minimize(xEnt)

says to compute the weight changes using gradient decent and the cross
entropy loss function we defined in lines 12, and 13, and a learning rate of
.5. We do not have to worry about computing derivatives, or anything. If
you express the forward computation in TF, and the loss in TF then the
TF compiler knows how to compute the necessary derivatives and string
them together in the right order to make the changes. We can modify this
by choosing a different learning rate, or, if we had a different loss function,
replace xEnt with something that pointed to a different TF computation.

Next, once we have defined our session (line 18) and initialized the pa-
rameter values (line 19) , we can train the model (lines 21 to 23). There we
use the code we got from the TF Mnsit library to extract 100 images and
their answers at a time and then run them by calling ses.run on the piece
of the computation graph pointed to by train When this loop is finished
we have trained on 1000 iterations with 100 images per iteration, or 100,000
test images all together. On my 4 processor Mac Pro this takes about 5
seconds. (More the first time to get the right things into the cache). I men-
tion 4 processor because TF looks at the available computational power and
generally does a good job of making using it without being told what to do.

Note one slightly odd thing about lines 21 to 23 — we never explicitly
mention doing the forward pass! TF figures this out as well, based on the
computation graph. From the GradentDecentOptimizer it knows that it
needs to have performed the computation pointed to by xEnt (line 12),
which requires the probs computation, which in turn specifies the forward
pass computation on line 11.

Lastly, lines 25 through 29 shows how well we do on the test data in terms
of percentage correct (91% or 92%). First just glancing at the organization
of the graph, observe that the accuracy computation ultimately requires the
forward pass computation probs but not the backward pass train. Thus,
as we should expect, the weights are not modified to better handing the
testing data.

As for the accuracy computation itself, it does what one would expect,
count the number of correct answers and divides by the number of images

34 CHAPTER 2. TENSORFLOW

processed. tf.argmax(prbs,1) finds returns an array of maximum prob-
abilities for each of the images, and the tf.equal sees if they correspond
to the correct answer for the image. tf.equal returns an array of boolean
values, which tt tf.cast(tensor, tf.float32) turns into floating point numbers
so that tf.reduce mean can add them up and get the percentage correct.

2.3 Multi-layered NNs

The program we have designed, first generally then in TF is single layered.
There is one layer of linear units. The natural question is can we do better
with multiple layers of such units. Early on NN researchers realized that the
answer is ”No”. This follows almost immediately after we see that linear
units can be recast as linear algebra matrices. That is, once we see that a one
layer feed-forward NN is simply computing: y = XW. In our Mnist model
W has shape [784,10] in order to transform the 784 pixel values into 10 logit
values and and add an extra weight to replace the bias term. Suppose we
add an extra layer of linear units U with shape [784,784] which in turn feeds
into a layer V with the same shape as W, [784,10]

y = (xU)V (2.1)

= x(UV) (2.2)

The second line follows from the associative property of matrix multiplica-
tion. The point here is that whatever capabilities are captured in the two
layer situation by the combination of U followed by the multiplication with
V could be captured in by a one layer NN with W = UV

It turns out there is a simple solution — add some non-linear compu-
tation between the layers. The most commonly used option is relu (or ρ)
which stands for rectified linear unit and is defined as

ρ(x) = max(x, 0) (2.3)

and is shown in Figure 2.2.
Non-linear functions put between layers in deep learning are called ac-

tivation functions. While relu is (currently) the most popular, there are
others that are in use — e.g., the sigmoid function, defined as:

S(x) =
e−x

1 + e−x
(2.4)

and shown in Figure In all cases activation are applied piecewise to the

2.3. MULTI-LAYERED NNS 35

-1-2

1

2

3

1 2 3

Figure 2.2: Behavior of relu

Figure 2.3: The sigmoid function

individual real numbers in the tensor argument. For example ρ([1, 17,−3]) =
[1, 17, 0]

Let’s do this in TF. In Figure 2.4 we replace the definitions of W and b
in lines 5 an 6 with lines 1 through 4 above, and replace the computation of
prbs in line 11 with lines 5 though 7 above. This turns our code into a multi-
layered NN. While the old program plateaued at about 92% accuracy after
training on 100,000 image, the new program achieves about 94% accuracy on
100,000 images. Furthermore, if we increase the number of training images

1 U = tf.variable(tf.random_normal([784,784], std_dev=.1))

2 bU = tf.variable(tf.random_normal([784], std_dev=.1)

3 V = tf.variable(tf.random_normal([784,10], std_dev=.1))

4 bV = tf.variable(tf.random_normal([10], std_dev=.1)

5 l1Output = matmul(img,U)+bu

6 l1Output=tf.relu(l1Output)

7 prbs=tf.softmax(matmul((l1Ouput,V)+bv)

Figure 2.4: TF replacement code for multi-level digit recognition

36 CHAPTER 2. TENSORFLOW

performance on the test set keeps increasing to about 97%.
Note that they only difference between this code and that without the

non-linear function is line 6. If we delete it, performance indeed goes back
down to about 92%. It is enough to make you believe in mathematics!

Chapter 3

Word Embeddings and
Language Models

3.1 Word Embeddings for Language Models

A language model is a probability distribution over all strings in a language.
At first blush this is a hard notion to get your head around. For example,
consider the last sentence “At first blush . . .” There is a good change you
have never seen this particular sentence, and unless you read this book
again you will never see it a second time. Whatever it’s probability is, it
must be very small. Yet, contrast that sentence with the same words, but in
reverse order. That is still less likely by a huge factor. So strings of words
can be more or less reasonable. Furthermore programs that want to, say,
translate Polish into English need to have some ability distinguish between
sentence that sound like English and those that do not. A language model
is a formalization of this idea.

We can get some further purchase on the idea by breaking the strings
into individual words and then asking, what is the probability of the next
word given the previous ones. So iet (E1,n) = (E1 . . . En) be a sequence of
n random variables denoting a string of n words, and e1,n is one candidate
value. E.g. if n were 6 then perhaps e1,6 =(We live in a small world). and
we could use the chain rule in probability to give us

P (We live in a small world) = P (We)P (live|We)P (in|We live) . . . (3.1)

37

38 CHAPTER 3. WORD EMBEDDINGS AND LANGUAGE MODELS

More generally

P (E1,n = e1,n) =

j=n∏
j=1

P (Ej = ej |E1,j−1 = e1,j−1) (3.2)

Before we go on, we should go back a bit to where we said ”breaking the
strings into a sequence of words.” This process is called tokenization and if
this were a book on text understanding we might spend as much as a chapter
on this by itself. However we have different fish to fry, so we will simply
say that a “word” for our purposes is any sequence of characters between
two white spaces (where we consider a line feed as a white space). Note
that this means that, e.g., “1066” is a word in the sentence “The Norman
invasion happened in 1066.” Actually, this is false, according to our what
space definition the word that appears in the above sentence is “1066.” ,
that is “1066” with a period after it. So we are going to also going to assume
that punctuation (e.g., periods, commas, colons) is split off from words, so
that the final period becomes a word in its own right, separate from the 1066
word that preceded it. (You may now be beginning to see how we might
spend an entire chapter on this.)

Also, we are going to cap our English vocabulary at some fixed size, say
10,000 different words. We use V to denote out vocabulary, and |V | is its
size. This is necessary because by the above definition of “word” we should
expect to see words in our development and test sets that do not appear
in the training set — e.g., “132,423” in the sentence “The population of
Providence is 132,423.” We do this by replacing all words not in V by a
special word “*UNK*”. So this sentence would now appear in our corpus
as “The population of Providence is *UNK* .”

With that out of the way let us return to Equation 3.2. If we had a very
large amount of English text we might be able to estimate the probabilities
on its right-hand side (at least for small n) simply by counting how often
we see, e.g., “We live” and how often “in”’ appears next, and then divide
the second by the first (i.e,. use the maximum likelihood estimate) to give
us an estimate of ,e.g., P (in|We live) But as n gets large this is impossible
for the lack of any examples in the training corpus of a particular, say, fifty
word sequence.

One standard response to this problem is to make an assumption that
the probability of the next word only depends on the previous one or two
words, and we can ignore all the words before that when estimating the
probability of the next. The version where we assume words only depend

3.1. WORD EMBEDDINGS FOR LANGUAGE MODELS 39

on the previous word looks like this:

P (E1,n = e1,n) =

j=n∏
j=1

P (Ej = ej |Ej−1 = ej−1) (3.3)

This is called a bigram model — where bigram means “to word”. It is called
this because each probability is only depending on a sequence of two words.

Now we want to use deep learning to estimate these bigram probabilities.
That is, we give the deep network a word, wi and the output is a probability
distribution over possible next words wi+1. To do this we need to somehow
turn words into the sorts of things that deep networks can manipulate, i.e.,
floating-point numbers. The now standard solution is to associate each word
with a vector of floats. These vectors are called word embeddings. For each
word we initialize its embedding as a vector of e floats, where e is a system
hyper-parameter. Depending on the application one typically sees values
from 20, to 200, and sometimes larger. Actually we do this in two steps.
First every word in the vocabulary V has a unique index (an integer) from
0 to |V | − 1. We then have an array E of dimensions |V | by e. E holds all
of the word embeddings so that if, say, “the” has index 5, the 5’th row of E
is the embedding of “the”.

With this in mind, a very simple feed-forward network for estimating
the probability of the next word is shown in Figure 3.1. The small square
on the left is the input to the network — the integer index of the current
word, wi. On the right are the probabilities assigned to possible next words
wi+1, and the cross-entropy loss function is − lnP (wc) the negative natural
log of the probability assigned to the correct next word. Returning to the
left again, the current word is immediately translated into its embedding by
looking up the wi’th row in E. From that point on all NN operations are
on the word embedding.

A critical point is that E is a parameter of the model. That is, initially
the numbers in E are random with mean zero and small standard deviation,
and their values are modified according to stochastic gradient decent. What
is amazing about this, aside from the fact that the process converges to
a stable solution, is that the solution has the property that words which
behave in similar ways end up with embeddings that are close together.
So if e (the size of the embedding vector) is, say, 30 then the prepositions
“near” and “about” point in roughly the same direction. in 30-dimensional
space, and neither is very close to, say, “computer’ (which will be closer to
“machine’).

With a bit more thought, however, perhaps this is not so amazing. As

40 CHAPTER 3. WORD EMBEDDINGS AND LANGUAGE MODELS

E
E W,b σ

Figure 3.1: A feed-forward net for language modeling

already stated the loss function is the cross entropy loss. Initially all the
logit values will be about equal since all of the model parameters are about
equal (and new zero). But there is some random jitter. Suppose we had
already trained on the pair of words “says that”. This would cause the
model parameters to move such that the embedding for “says leads to a
higher probability for “that”’ coming next. If we now see “recalls that’
moving the embedding for “recalls’ to look more like says will similarly
make “that” have higher probability, so that is what the model is going to
do.

Figure 3.2 shows what happens when we run our model on about a mil-
lion words of text, a vocabulary size of about 7,500 words and an embedding
size of 30. The cosine similarity of two vectors is a standard measure of how
close two vectors are to one another. In the case of two dimensional vectors
it is the standard cosine function and is 1.0 if the vectors point in the same
direction, 0 if they are orthogonal and -1.0 if in opposite directions. The
computation for arbitrary dimension cosine similarity is

cos(x,y) =
x · y

(
√

(
∑i=n

i=1 x
2
i)(
√

(
∑i=n

i=1 y
2
i)

(3.4)

In Figure 3.2 We have five pairs of similar words, numbered from zero to
nine. For each word we compute its cosine similarity with all of the words
that precede it. Thus we would expect all odd numbered words to be most

3.2. BUILDING LANGUAGE MODELS 41

Word Num. Word Largest Cosine Similarity Most Similar

0 under
1 above 0.362 0
2 the -0.160 0
3 a 0.127 2
4 recalls 0.479 1
5 says 0.553 4
6 rules -0.066 4
7 laws 0.523 6
8 computer 0.249 2
9 machine 0.333 8

Figure 3.2: Ten words, the highest cosine similarity to the previous words,
and the index of the word with highest similarity

similar to the word that immediately precedes it, and that is indeed the case.
We would also expect that even numbered words (the first of each similar
word pairs) not to be very similar to any the the previous words. For the
most part this is true as well.

Because embedding similarity to a great extent mirrors meaning simi-
larity, there has been a lot of study of them as a way to quantify “mean-
ing” and we now know how to improve this result by quite a bit. The
main factor is simply how many words we use for training, though there
are other architectures that help as well. However, mostly they suffer from
similar limitations, For example, they are often blind when trying to distin-
guish between synonyms and antonyms. (Arguably “under” and “above”
are antonyms.) Remember that a language model is trying to guess the
next word, so words that have similar next words will get similar embed-
ding, and very often antonyms do exact that. Also getting good models for
embeddings of phrases rather than single words is much harder.

3.2 Building Language Models

Now let us build a TF program for computing bigram probabilities. It is very
similar to that in Figure 2.1 as in both cases we have a single fully connected
layer, feed forward NN ending in a softmax to produce the probabilities
needed for a cross-entropy loss. There are only a few differences.

First, rather than input an image the NN takes a word index i where
0 ≤ i < |V | and the firrst thing is to find E[i] the words embedding

42 CHAPTER 3. WORD EMBEDDINGS AND LANGUAGE MODELS

inpt=tf.placeholder(tf,int32, shape=[batchSz])

answr=tf.placeholder(tf.int32, shape=[batchSz])

E = tf.Variable(tf.random_normal([vocabSz, embedSz],

std_dev = 0.1))

embed = tf.nn.embedding_lookup(E, inpt)

We assume that the unshown code for reading the words in and replacing the
characters by unique word indices packages up batchSz of them in a column
vector. input poits to this vector. (The correct answer for each word (the
next word of the text) is a similar column vector, answr. Next we created the
embedding lookup array E. The function tf.nn.embedding lookupcreates
the necessary TF code and puts in into the computation graph. Future
manipulations (e.g., tf.mat mul will then operate on embed). Naturally,
TF can determine how to update E to lower the loss, just like the other
model parameters.

Turning to the other end of the feed-forward network, we will use a
built-in TF function to compute the cross-entropy loss:

xEnt=

tf.nn.sparse_softmax_cross_entropy_with_logits(logits,answr)

loss = tf.reduce_sum(xEnt)

The TF function tf.nn.sparse softmax cross entropy with logits takes
as its first argument a]tt batchSz of logit values (i.e., a batchSz by vocabSz

array of logits) that it feeds into softmax to get a column vector of probabili-
ties batchSz by vocabSz vector of probabilities. so an element of the output
array ei,j is the probability of word j in the i’th example in that batch. The
function then locates the probability of the correct answer (from tt answr
for each line, computes its natural-log and outputs a batchSz by 1 array (ef-
fectively a column vector) of those log probabilities. The second line above
is going to take that column vector and sum it to get the total loss for that
batch of examples.

At this point we do a few epochs over our training examples, and get
embeddings that demonstrate word similarities like those in 3.2. Also, if
we want to evaluate the language model we can print out the total loss on
the training set after every epoch. What you should see that for the first
few epochs it will decrease, though the exact numbers that get spit out
are rather hard to interpret. So researchers in language modeling print a
related number called the perplexity. Up until now we have been dealing
with digit images, and the natural evaluation metric for for our models is

3.2. BUILDING LANGUAGE MODELS 43

how accurate they are. But nobody cars about actually predicting next
words (we are rarely be able to do so) but rather we want a measure of
how well we are doing overall in prefering reasonable sequences of words to
unreasonable ones. Perplexity does this for us.

The perplexity of a corpus d (we typically measure it on our development
corpus) with |d| words, and total cross-entropy x Iis e raised to the negative
per-word cross-entropy.

f(d) = e
−xd

|d| (3.5)

In Chapter 1 in our debugging discussion (page 21) we suggested com-
puting the average per example loss. When the loss is the cross-entropy loss,
as it was then, then we are, in fact, computing the average cross-entropy
loss.

More to come.

