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CS145: Lecture 22 Outline
ØEstimator properties
ØBayesian Parameter Estimation
ØExamples of Bayesian Estimators



Statistical Inference Problems
Hypothesis Testing:  How do I categorize “test data”?
Ø Two (or more) mutually exclusive hypotheses:  H=0 or H=1?
Ø The distribution of the data under each hypothesis is known:

Ø Goal:  Choose between hypotheses
pX|H(x | 0), pX|H(x | 1) fX|H(x | 0), fX|H(x | 1)

Estimation:  How do I learn from “training data”?
Ø We have n independent observations sampled from some 

unknown probability distribution:
Ø We assume the distribution of our data lives in some family, 

but don’t know the right parameter values
Ø Goal:  Learn parameters that best “explain” the observations

x1, x2, . . . , xn

✓



Example: Bernoulli Distribution
Ø A Bernoulli or indicator random variable X has one parameter:

Ø The probability mass function for an observation xi equals:
pX(1) = ✓, pX(0) = 1� ✓, X = {0, 1}

Ø Goal:  Estimate      from n independent observations:✓

pX(xi; ✓) = ✓xi(1� ✓)1�xi

log pX(xi; ✓) = xi log(✓) + (1� xi) log(1� ✓)

P (x1, x2, . . . , xn; ✓) =
nY

i=1

pX(xi; ✓)



Example: Uniform Distribution
Ø A continuous uniform distribution between 0 and 

has the following probability density function:

Ø Goal:  Estimate      from n independent observations:✓

✓

fX(xi; ✓) =
1

✓
if 0  xi  ✓,

fX(xi; ✓) = 0 if xi < 0 or xi > ✓.

f(x1, x2, . . . , xn; ✓) =
nY

i=1

fX(xi; ✓)



Example: Gaussian Distribution
Ø A univariate Gaussian distribution is

parameterized by its mean and variance:

✓ = {µ,�2}
Ø Goal:  Estimate      from n independent observations:✓

f(x1, x2, . . . , xn; ✓) =
nY

i=1

fX(xi; ✓)

fX(xi; ✓) =
1p
2⇡�2

e�
1
2 (

x�µ
� )2



Maximum Likelihood (ML) Estimation
Ø Suppose I have n independent observations sampled from 

some unknown probability distribution:
Ø Suppose I have two candidate parameter estimates where:

x = {x1, x2, . . . , xn}

Given no other information, choose the higher likelihood model!
pX(x; ✓1) > pX(x; ✓2)

Ø The maximum likelihood (ML) parameter estimate is defined as:
Discrete
Observations

Continuous
Observations

✓̂ = argmax
✓

nY

i=1

pX(xi; ✓) = argmax
✓

nX

i=1

log pX(xi; ✓)

✓̂ = argmax
✓

nY

i=1

fX(xi; ✓) = argmax
✓

nX

i=1

log fX(xi; ✓)



Finding ML Estimates
Ø For many practical models, the log-likelihood is a

smooth and continuous function of the parameters: 

Maximum will occur at a point where derivative equals zero!

Ø The maximum likelihood (ML) parameter estimate is defined as:
Discrete
Observations

Continuous
Observations

✓̂ = argmax
✓

nY

i=1

pX(xi; ✓) = argmax
✓

nX

i=1

log pX(xi; ✓)

✓̂ = argmax
✓

nY

i=1

fX(xi; ✓) = argmax
✓

nX

i=1

log fX(xi; ✓)

L(✓) =
Pn

i=1 log pX(xi; ✓) L(✓) =
Pn

i=1 log fX(xi; ✓)



Example: Bernoulli Distribution
Ø A Bernoulli or indicator random variable X has one parameter:

Ø The maximum likelihood (ML) estimate maximizes:
xi 2 {0, 1}

✓̂ =
1

n

nX

i=1

xi ML: Empirical fraction of successes!

L(✓) =
nX

i=1

xi log(✓) + (1� xi) log(1� ✓)

pX(xi; ✓) = ✓xi(1� ✓)1�xi



Example: Exponential Distribution

E[X] =
1

✓

Ø A geometric random variable X has parameter:

Ø The maximum likelihood (ML) estimate maximizes:

ML: Match model to empirical mean!✓̂ =

 
1

n

nX

i=1

xi

!�1

fX(xi; ✓) = ✓e�✓xi , xi � 0.

L(✓) =
nX

i=1

log(✓)� ✓xi



Example: Gaussian Distribution
Ø A univariate Gaussian distribution is:

Ø The ML estimate maximizes:

µ̂ =
1

n

nX

i=1

xi �̂2 =
1

n

nX

i=1

(xi � µ̂)2

fX(xi; ✓) =
1p
2⇡�2

e�
1
2 (

x�µ
� )2

L(µ,�) =
nX

i=1

�1

2
log(2⇡)� 1

2
log(�2)� 1

2

✓
xi � µ

�

◆2



Example: Uniform Distribution
Ø A continuous uniform distribution between 0 and     : ✓

Ø The maximum likelihood (ML) estimate maximizes:
Cannot take logarithm because
density can equal exactly zero.

Ø Optimal to choose smallest       under which the data
has positive probability:

✓̂ = max{x1, x2, . . . , xn}

✓

fX(xi; ✓) =
1

✓
if 0  xi  ✓,

fX(xi; ✓) = 0 if xi < 0 or xi > ✓.

L(✓) =
nY

i=1

fX(xi; ✓)



Reminder: Convergence in Probability
8 Limit Theorems Chap. 7

Intuitively, for any given accuracy level ϵ, an must be within ϵ of a, when
n is large enough.

Convergence in Probability

Let Y1, Y2, . . . be a sequence of random variables (not necessarily indepen-
dent), and let a be a real number. We say that the sequence Yn converges
to a in probability, if for every ϵ > 0, we have

lim
n→∞

P
(
|Yn − a| ≥ ϵ

)
= 0.

Given this definition, the WLLN simply says that the sample mean con-
verges in probability to the true mean µ.

If the random variables Y1, Y2, . . . have a PMF or a PDF and converge in
probability to a, then according to the above definition, “almost all” of the PMF
or PDF of Yn is concentrated to within a an ϵ-interval around a for large values
of n. It is also instructive to rephrase the above definition as follows: for every
ϵ > 0, and for every δ > 0, there exists some n0 such that

P
(
|Yn − a| ≥ ϵ

)
≤ δ, for all n ≥ n0.

If we refer to ϵ as the accuracy level, and δ as the confidence level, the definition
takes the following intuitive form: for any given level of accuracy and confidence,
Yn will be equal to a, within these levels of accuracy and confidence, provided
that n is large enough.

Example 7.5. Consider a sequence of independent random variables Xn that are
uniformly distributed over the interval [0, 1], and let

Yn = min{X1, . . . , Xn}.

The sequence of values of Yn cannot increase as n increases, and it will occasionally
decrease (when a value of Xn that is smaller than the preceding values is obtained).
Thus, we intuitively expect that Yn converges to zero. Indeed, for ϵ > 0, we have
using the independence of the Xn,

P
(
|Yn − 0| ≥ ϵ

)
= P(X1 ≥ ϵ, . . . , Xn ≥ ϵ)

= P(X1 ≥ ϵ) · · ·P(Xn ≥ ϵ)

= (1 − ϵ)n.

Since this is true for every ϵ > 0, we conclude that Yn converges to zero, in proba-
bility.

Weak Law of Large Numbers:

Ø The “empirical mean” converges to true mean in probability:
lim

n!1
P (|Mn � µ| � ✏) = 0

Convergence of the sample mean The pollster’s problem

(Weak law of large numbers)
• f : fraction of population that “. . . ”

• X1, X2, . . . i.i.d.
2 • ith (randomly selected) person polled:

finite mean µ and variance ⇥

X1 + · · · + 1 if yes,X ,n
i =M = Xn

⇤
�

0, if no.n

• Mn = (X

⇥

1 + · · · + Xn)/n
• E[Mn] = fraction of “yes” in our sample

• Goal: 95% confidence of ⇥1% error

• Var(Mn) = P(|Mn � f | ⇤ .01) ⇥ .05

Use Chebyshev’s

Var( 2

• inequality:

M ⇥
(| n) 2⇥P Mn � µ| ⇤ �) ⇥ = 2 P(|Mn � f | ⇤ M

2 .01)� n� ⇥ n

(0.01)2
2⇥ 1• Mn converges in probability to µ = x

n(0.01)2
⇥

4n(0.01)2

• If n = 50,000,
then P(|Mn � f | ⇤ .01) ⇥ .05
(conservative)

Di�erent scalings of Mn The central limit theorem

• X1, . . . , Xn i.i.d. “Standa n = X1 +
2

• rdized” S · · · + Xn:
finite variance ⇥ Sn E[Sn] Sn

Zn =
� nE[X]

=
�

⇥
⌃

n ⇥• Look at three variants of their sum: Sn

– zero mean
• Sn = + + Xn variance 2X1 · · · n⇥

– unit variance

S
• n Let be a standard normal r.v.Mn = variance 2⇥ /n

n
• Z

(zero mean, unit variance)
converges “in probability” to E[X] (WLLN)

Sn every c:
• ⌃ constant variance 2⇥

• Theorem: For

n
P(Zn ⇥ c)⌅ P(Z ⇥ c)

– Asymptotic shape?

• P(Z ⇥ c) is the standard normal CDF,
�(c), available from the normal tables

2
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E[Mn] = µ

for any ✏ > 0



Consistency of ML Estimators

Ø An estimator is consistent if the sequence of estimates
converges to the true parameter in probability, for any true

✓̂n
✓

lim
n!1

P (|✓̂n � ✓| � ✏) = 0

Ø Under “mild conditions” that are true for most distributions,
the ML parameter estimates are always consistent
Examples:  Gaussian distribution, uniform distribution, …

Ø The ML estimator also satisfies a central limit theorem,
and for large n has provably small variance (“efficiency”)

✓̂n = argmax
✓

nY

i=1

fX(xi; ✓) = argmax
✓

nX

i=1

log fX(xi; ✓)

for any ✏ > 0



Characterization of estimations
Ø iid samples                      obtained from distribution
ØWe want to estimate a parameter     of  

Ø Let       be an estimate of    obtained using     i.i.d. 
samples from       (e.g. sample mean, ML estimators)

Ø       is a Random Variable

ØWhat are desirable properties of the estimator     ?

{x1, x2, . . . , xn} D
✓ D

✓̂n

✓̂n
✓̂n

✓

D
n



Consistency
Ø An estimator is consistent if the sequence of estimates

converges to the true parameter in probability, for any true
✓̂n

✓
lim
n!1

P (|✓̂n � ✓| � ✏) = 0

Ø Under “mild conditions” that are true for most distributions,
the ML parameter estimates are always consistent
Examples:  Gaussian distribution, uniform distribution, …

Ø Mild conditions = log likelihood is a smooth function with 
unique maximum

for any ✏ > 0



Unbiased estimator
Ø An estimator is unbiased if its expected value corresponds to 

the actual correct value, that is iff

ED[✓̂] = ✓

Ø An estimator is asymptotically unbiased if its expected value 
for converges to the actual correct value as              , that is iif

Ø Any unbiased estimator is also asymptotically unbiased but 
NOT viceversa

n ! 1
lim

n!1
EDn [✓̂n] = ✓



Example: sample average
Ø iid samples                      obtained from  distribution
ØSample average

Ø Is it unbiased?
Ø Is it asymptotically unbiased? 

Ø Is it consistent?

{x1, x2, . . . , xn} D
✓̂ =

1

n

X

i=1

xi



Example: modified sample average
Ø iid samples                      obtained from distribution
ØSample average

Ø Is it unbiased?
Ø Is it asymptotically unbiased? 

Ø Is it consistent?

{x1, x2, . . . , xn} D
✓̂ =

1

n

nX

i=1

xi +
1

n



Example: single sample estimate
Ø Iid samples                      obtained from distribution
ØSingle sample estimate

Ø Is it unbiased?
Ø Is it asymptotically unbiased? 

Ø Is it consistent?

{x1, x2, . . . , xn} D
✓̂ = x1

Unless Var = 0



Example: ML estimators Bernoulli
Ø iid samples                     obtained from a Bernoulli dist.

ØEstimate probability of head

Ø Is it unbiased?

Ø Is it asymptotically unbiased? 
Ø Is it consistent?

{x1, x2, . . . , xn}

p̂ =
1

n

nX

i=1

x1



Example: ML estimator uniform distribution
Ø iid samples                      obtained from
ØEstimate for     given by

Ø Is it unbiased?
 

{x1, x2, . . . , xn} U(0, A)
Y = max{xi}A



Example: ML estimator uniform dist
ØSample                      obtained from
ØEstimate

Ø Is it unbiased?
 

{x1, x2, . . . , xn} U(0, A)
Y = max{xi}



Example: ML estimator uniform dist
ØSample                      obtained from
ØEstimate

Ø Is it asymptotically unbiased?
 

{x1, x2, . . . , xn} U(0, A)
Y = max{xi}



Example: ML estimator uniform dist
ØSample                      obtained from
ØEstimate

Ø Is it asymptotically unbiased?

 

{x1, x2, . . . , xn} U(0, A)
Y = max{xi}

lim
n!1

E[Y ] = lim
n!1

n

n+ 1
A = A



Example: ML estimator uniform dist
Ø iid Samples                      obtained from
ØEstimate

Ø Is it consistent?
 

{x1, x2, . . . , xn} U(0, A)
Y = max{xi}



Example: ML estimator uniform dist
Ø i.i.d. samples                       obtained from
ØEstimate

Ø Is it consistent?
 

{x1, x2, . . . , xn} U(0, A)
Y = max{xi}

A A

A A A
A
A

A

A

A



Relation between properties
Ø If an estimate is unbiased, is it also consistent?

 



Relation between properties
Ø If an estimate is unbiased, is it also consistent?

Ø If                            then YES 

From Weak Law of large numbers

 

V ar[✓̂] ! 0



CS145: Lecture 22 Outline
ØEstimator properties
ØBayesian Parameter Estimation
ØExamples of Bayesian Estimators



Statistical Inference Problems
Hypothesis Testing:  How do I categorize “test data”?
Ø Two (or more) mutually exclusive hypotheses:  H=0 or H=1?
Ø The distribution of the data under each hypothesis is known:

Ø Goal:  Choose between hypotheses
pX|H(x | 0), pX|H(x | 1) fX|H(x | 0), fX|H(x | 1)

Estimation:  How do I learn from “training data”?
Ø We have n independent observations sampled from some 

unknown probability distribution:
Ø We assume the distribution of our data lives in some family, 

but don’t know the right parameter values
Ø Goal:  Learn parameters that best “explain” the observations

x1, x2, . . . , xn

✓



Maximum Likelihood (ML) Estimation
Ø Suppose I have n independent observations sampled from 

some unknown probability distribution:
Ø Suppose I have two candidate parameter estimates where:

x = {x1, x2, . . . , xn}

Given no other information, choose the higher likelihood model!
pX(x; ✓1) > pX(x; ✓2)

Ø The maximum likelihood (ML) parameter estimate is defined as:
Discrete
Observations

Continuous
Observations

✓̂ = argmax
✓

nY

i=1

pX(xi; ✓) = argmax
✓

nX

i=1

log pX(xi; ✓)

✓̂ = argmax
✓

nY

i=1

fX(xi; ✓) = argmax
✓

nX

i=1

log fX(xi; ✓)



Degeneracies in ML Estimation
✓̂n = argmax

✓

nY

i=1

fX(xi | ✓) = argmax
✓

nX

i=1

log fX(xi | ✓)

Ø The theory justifying ML estimates is asymptotic:
they have good properties as n becomes very large

Ø But they can have poor properties with small datasets.
Example:  ML estimate of Bernoulli with no observed heads.  

Ø More generally, ML estimates can often give parameter
estimates that are too “extreme” (too large or too small)

✓̂ =
1

n

nX

i=1

xi = 0 if xi = 0 for all i assumes observing heads
in future is impossible!



Bayesian Parameter Estimation
Ø Suppose I have n independent observations sampled from 

some unknown probability distribution:
Ø We have a likelihood model with unknown parameters:

x = {x1, x2, . . . , xn}

Ø We have a prior distribution on parameters (possible models):

fX|⇥(x | ✓) =
nY

i=1

fX|⇥(xi | ✓)

f⇥(✓)
Ø Posterior distribution on parameters, given data, is then:

f⇥|X(✓ | x) = 1

fX(x)
f⇥(✓)

nY

i=1

fX|⇥(xi | ✓)



Types of priors: proper vs improper
Ø Proper prior if

Ø Improper prior if

Improper priors sometimes used for  uninformative priors

Z
f⇥(✓)d✓ = 1

Z
f⇥(✓)d✓ 6= 1



Types of priors: informative vs uninformative
Ø Uninformative priors express “vague” or “general” information about a 

variable
• the variable is positive
• the value of the variable is within a limit
• Principle of indifference all possible values of      are equally likely

Ø Weakly Informative priors express partial information about a variable to 
loosely constrain the value of     into a range – Used for regularization

Ø Informative priors express specific, definite information about a variable 
which significantly constrains the ranges of values of 

• An example: a prior distribution for the temperature at noon tomorrow selected as a normal 
distribution with expected value equal to today's noontime temperature, with variance equal 
to the day-to-day variance of atmospheric temperature

⇥

⇥

⇥



Bayesian Parameter Estimation
Ø Maximum a Posteriori (MAP) parameter estimate:

Choose the parameters with largest posterior probability.

Ø Posterior distribution on parameters, given data, is then:

f⇥|X(✓ | x) = 1

fX(x)
f⇥(✓)

nY

i=1

fX|⇥(xi | ✓)

✓̂ = argmax
✓

f⇥|X(✓ | x) = argmax
✓

f⇥(✓)
nY

i=1

fX|⇥(xi | ✓)

Ø Conditional Expectation parameter estimate:
Set the parameters to the mean of the posterior distribution.

✓̂ = E[✓ | x] =
Z

✓f⇥|X(✓ | x) d✓



Bayesian Parameter Estimation
Ø Maximum a Posteriori (MAP) parameter estimate:

Choose the parameters with largest posterior probability.

Ø Both estimators pick parameters with high posterior probability
Ø Choice of estimator can be formalized via decision theory

(generalization of earlier analysis of hypothesis testing)

✓̂ = argmax
✓

f⇥|X(✓ | x) = argmax
✓

f⇥(✓)
nY

i=1

fX|⇥(xi | ✓)

Ø Conditional Expectation parameter estimate:
Set the parameters to the mean of the posterior distribution.

✓̂ = E[✓ | x] =
Z

✓f⇥|X(✓ | x) d✓



Example: Bernoulli Distribution
Ø A Bernoulli or indicator random variable X has one parameter:

Ø Suppose we place a uniform prior distribution:
pX(xi | ✓) = ✓xi(1� ✓)1�xi xi 2 {0, 1}

f⇥(✓) = 1, 0  ✓  1.

Ø The posterior distribution is then:

f⇥|X(✓ | x) = 1

fX(x)
f⇥(✓)

nY

i=1

pX|⇥(xi | ✓) /
nY

i=1

pX|⇥(xi | ✓)



Example: Bernoulli Distribution

Ø The posterior distribution given n observation equals:

Ø The posterior distribution is then:

f⇥|X(✓ | x) = 1

fX(x)
f⇥(✓)

nY

i=1

pX|⇥(xi | ✓) /
nY

i=1

pX|⇥(xi | ✓)

Ø A Bernoulli or indicator random variable X has one parameter:
pX(xi | ✓) = ✓xi(1� ✓)1�xi xi 2 {0, 1}

f⇥|X(✓ | x) / ✓n1(1� ✓)n0
n1 =

Pn
i=1 xi

n0 = n� n1

This is an example of a beta distribution.



The Beta Distribution

Beta(✓ | a, b) = 1

B(a, b)
✓a�1(1� ✓)b�1 0  ✓  1

E[✓] =
a

a+ b
Var(✓) =

ab

(a+ b)2(a+ b+ 1)



Bayesian Estimators for Bernoulli
Ø A Bernoulli or indicator random variable X has one parameter:

pX(xi | ✓) = ✓xi(1� ✓)1�xi xi 2 {0, 1}

f⇥|X(✓ | x) / ✓n1(1� ✓)n0
n1 =

Pn
i=1 xi

n0 = n� n1

f⇥|X(✓ | x) = Beta(✓ | n1 + 1, n0 + 1)

Ø The posterior distribution given n observation equals:

Ø This gives the following Bayesian parameter estimates:
✓̂ =

n1

n
Maximum a Posteriori (MAP)

= ML with uniform prior

✓̂ =
n1 + 1

n+ 2
Conditional Expectation
= “add one” to counts



Bayesian Estimators for Bernoulli

f⇥|X(✓ | x) = Beta(✓ | n1 + 1, n0 + 1)

Ø This gives the following Bayesian parameter estimates:
✓̂ =

n1

n
Maximum a Posteriori (MAP)

= ML with uniform prior

✓̂ =
n1 + 1

n+ 2
Conditional Expectation
= “add one” to counts

n1 =
Pn

i=1 xi

n0 = n� n1



A Sequence of Beta Posteriors

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

6

7

8

9

10

 

 

truth

n=5

n=50

n=100

Law of Large Numbers!
Central Limit Theorem!



CS145: Lecture 22 Outline
ØEstimator properties
ØBayesian Parameter Estimation
ØExamples of Bayesian Estimators



Example: Uniform Distribution
Ø A continuous uniform distribution between 0 and     : ✓

Ø Suppose we place a uniform prior distribution:
f⇥(✓) = 1, 0  ✓  1.

fX(xi | ✓) =
1

✓
if 0  xi  ✓,

fX(xi | ✓) = 0 if xi < 0 or xi > ✓.

Ø The posterior distribution, given one observation x, is then:
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Example: Uniform Distribution
Ø Maximum a Posteriori (MAP) estimate:

(= Maximum Likelihood with uniform prior)

Ø Conditional expectation estimate:

Ø The posterior distribution, given one observation x, is then:
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assumes observing larger 
data is impossible!



Example: Gaussian distribution
Ø Gaussian distribution with fixed variance but uncertain mean:

Ø Suppose we place a zero-mean Gaussian prior distribution:

fX(xi | ✓) =
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Ø The Gaussian posterior distribution given n observations:
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Posterior Mean versus Empirical Mean
Optimal Estimator:
Posterior mean,
Posterior mode, &
Posterior median

Example:
Posterior given varying 
amounts of data n

✓̂ = µN = E[✓ | x]

✓ = 0.8
⌫ = 0.1

Ø The posterior mean approaches empirical mean (ML) as
Ø The posterior variance shrinks (law of large numbers) as

n ! 1
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Impact of Prior Variance
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Example:  Posteriors given same single 
observation, for two different priors.



Food for thought
ØAre the example Bayesian ML estimates unbiased?

ØAsymptotically unbiased?

ØConsistent?



Brain State Classification from fMRI148 T. M. MITCHELL ET AL.

Figure 1. Typical fMRI data. The top portion of the figure shows fMRI data for a selected set of voxels in the
cortex, from a two-dimensional image plane through the brain. A fifteen second interval of fMRI data is plotted at
each voxel location. The anterior portion of the brain is at the top of the figure, posterior at bottom. The left side
of the brain is shown on the right, according to standard radiological convention. The full three-dimensional brain
image consists of sixteen such image planes. The bottom portion of the figure shows one of these plots in greater
detail. During this interval the subject was presented a word, answered whether the word was a noun or verb, then
waited for another word.

Maximization to estimate mixture models to cluster the data. Others have used Principle
Components Analysis and Independent Components Analysis (McKeown et al., 1998) to
determine spatial-temporal factors that can be linearly combined to reconstruct the fMRI
signal.

Gaussian Naïve Bayes Classifiers, Mitchell et al., Machine Learning 2004.

154 T. M. MITCHELL ET AL.

The expected classification error of the default classifier (guessing the most common
class) in this case is 0.50, given the equal number of examples from both classes. The
average error obtained by the most successful combination of feature selection and classifier
was 0.25, averaged over 5 subjects, with the best single-subject classifier reaching an error
of 0.10 (refer to Section 6.2 for more details).

5.3. Semantic categories study

In this study, 10 subjects were presented with individual nouns belonging to twelve distinct
semantic categories (e.g., Fruits, Tools), and asked to determine whether the word belonged
to a particular category. We used this data to explore the feasibility of training classifiers to
detect which of the semantic categories of word the subject was examining.

The trials in this study were divided into twelve blocks. In each block, the name of a
semantic category was first displayed for 2 seconds. Following this, the subject was shown
a succession of 20 words, each presented for 400 msec and followed by 1200 msec of
blank screen. After each word was presented, the subject clicked a mouse button to indicate
whether the word belonged to the semantic category named at the beginning of the block.
In fact, nearly all words belonged to the named category (half the blocks contained no out-
of-category words, and the remaining blocks contained just one out-of-category word). A
multi-second blank screen rest period was inserted between each of the twelve blocks. The
twelve semantic categories of words presented were “fish,” “four-legged animals,” “trees,”
“flowers,” “fruits,” “vegetables,” “family members,” “occupations,” “tools,” “kitchen items,”
“dwellings,” and “building parts.” Words were chosen from lists of high frequency words
of each category, as given in Battig and Montague (1968), in order to avoid obscure or
multiple-meaning words. fMRI images were acquired once per second.

The learning task we considered for this study is to distinguish which of the twelve
semantic categories the subject is considering, based on a single observed fMRI image.
Following our earlier notation, we wish to learn a classifier of the form:

f : fMRI(t) → WordCategory

where fMRI(t) is a single fMRI image, and where WordCategory is the set of 12 semantic
categories described above.

A total of 384 example images were collected for each subject (32 examples per class,
times 12 classes). All voxels from 30 ROIs were used, yielding a total of 8,470 to 11,136
voxels, depending on the subject. In this case the classifier input is a single image, so the
classifier input dimension is equal to the number of voxels, prior to feature selection.

The trained classifier outputs a rank-ordered list of the 12 categories, ranked from most
to least probable. We therefore evaluate classifier error using the normalized rank error
described in Section 4, where the default classifier (guessing the most frequent class) yields
an expected normalized rank error of 0.50. The normalized rank error for the most successful
combination of feature selection and classifier was 0.08 (i.e. on average the correct word
category was ranked first or second out of the twelve categories), over 10 subjects, with the
best subject reaching 0.04. (refer to Section 6.2 for details).

“fish,” “four-legged animals,” “trees,” 
“flowers,” “fruits,” “vegetables,” “family 

members,” “occupations,” “tools,” “kitchen 
items,” “dwellings,” & “building parts.” 
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Figure 2. Color plots show locations of voxels that best predict the word semantic category, for three different
human subjects. For each voxel, the color indicates the normalized rank error over the test set, for a GNB classifier
based on this single voxel. Note the spatial clustering of highly predictive voxels, and the similar regions of
predictability across these three subjects. The range of normalized rank errors is [Red ≈ 0.25, Dark Blue ≈ 0.6],
with other colors intermediate between these two extremes. Each image corresponds to a single two-dimensional
plane through the brain of one subject.

One reasonable question that can be raised regarding these classifier results is whether the
classifier is indeed learning the pattern of brain activity predictive of semantic categories,
or whether it is instead learning patterns related to some other time-varying phenomenon
that influences fMRI activation. One unfortunate property of the experimental protocol
for collecting data, from this point of view, is that all of the words belonging to a single
category are presented within a single time interval (i.e., a single experiment block). In
fact we do believe this temporal adjacency may be influencing our results, but we also be-
lieve the classifier is indeed capturing regularities primarily related to semantic categories.
One strong piece of supporting evidence is that classifiers trained for different human sub-
jects tend to rely on the same brain locations to make their predictions, and that these
regions have been reported by others as related to semantic categorization. Figure 2 il-
lustrates the brain regions containing the most informative fMRI signal for classification,
across three subjects. In this figure, red and yellow indicate the voxels whose activity allows
most accurate classification. Note the highly discriminating voxels are clustered together,
in similar regions across these subjects. These locations for discriminability match those
reported in earlier work on semantic categorization by Chao, Haxby, and Martin (1999),
Chao, Weisberg, and Martin (2002), Ishai et al. (1999) and Aguirre, Zarahn, and D’Esposito
(1998), as well as some novel areas that are currently under investigation.

6. Lessons learned

6.1. Can one learn to decode mental states from fMRI?

The primary goal leading to this research was to determine whether it is feasible to use
machine learning methods to decode mental states from single interval fMRI data. The
successful results reported above for all three data sets indicate that this is indeed feasible in

single-voxel accuracy (red high, blue low)
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Table 1. Error rates for classifiers across all studies.

Examples Feature
Study per class selection GNB SVM 1NN 3NN 5NN 9NN

Picture vs. 40 Yes 0.18 0.11 0.22 0.18 0.18 0.19
Sentence 40 No 0.34 0.34 0.44 0.44 0.41 0.38

Semantic 32 Yes 0.08 N/A 0.31 0.21 0.17 0.14
Categories 32 No 0.10 N/A 0.40 0.40 0.40 0.25

Syntactic 10 Yes 0.25 0.28∗ 0.39 0.39 0.38 0.34
Ambiguity 10 No 0.41 0.38 0.50 0.46 0.47 0.43

Each table entry indicates the mean test error averaged over all single-subject classifiers trained for a particular
fMRI study and learning method. The rows with Feature Selection “No” show results when using all voxels
within the available ROIs. The rows with Feature Selection “Yes” show results of the feature selection method
that produced the lowest errors. In every case except one, this was the “Active” feature selection method described
in Section 6.3.1. The exception is the entry marked with the “*”, for which “RoiActive” feature selection worked
best. The variant of GNB which produced the strongest results (and which is therefore reported in this table) is
GNB-SharedVariance for the Syntactic Ambiguity study, and GNB-DistinctVariance for the other two studies.

Ambiguity study this was GNB-SharedVariance, and in the other two studies it was GNB-
DistinctVariance.

As can be seen in the table, the GNB and SVM classifiers outperformed kNN. Examining
the performance of kNN, one can also see a trend that performance generally improves with
increasing values of k.

Our second set of experiments examined the performance of the classifiers when used in
conjunction with feature selection. The specific feature selection methods we considered
are described in detail in the next subsection. For each study and learning method the table
reports results using the most successful feature selection method, in the table row indicating
feature selection “Yes.” In all cases except one (the table entry marked by the “*”), the most
successful feature selection method was the “Active” method described in Section 6.3.1.

As can be seen in Table 1, performing feature selection produced a large and consistent
improvement in classification error across all studies and learning methods. As in the exper-
iments with no feature selection, GNB and SVM outperform kNN when feature selection
is used, and the performance of kNN improves as k increases.

6.2.1. Analysis. One clear trend in this data is that kNN fared less well than GNB or SVMs
across all studies and conditions. In retrospect, this is not too surprising given the high
dimensional, sparse training data sets. It is well known that the kNN classifier is sensitive
to irrelevant features, as these features add in irrelevant ways to the distance between train
and test examples (Mitchell, 1997). This explanation for the poor performance of kNN is
also consistent with the dramatic improvement in kNN performance resulting from feature
selection. As the table results indicate, feature selection sometimes reduces kNN error by
a factor of two or more, presumably by removing many of these irrelevant, misleading
features.

As discussed in Section 4.2, the two variants of GNB we considered differ only in the
number of distinct parameters estimated when modeling variances in the class conditional



Naïve Bayes for Continuous Features
Ø Every feature has class-specific mean, variance: 

N digits, D pixels, xnd 2 R

N scans, D voxels, xnd 2 R
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Figure 1. Typical fMRI data. The top portion of the figure shows fMRI data for a selected set of voxels in the
cortex, from a two-dimensional image plane through the brain. A fifteen second interval of fMRI data is plotted at
each voxel location. The anterior portion of the brain is at the top of the figure, posterior at bottom. The left side
of the brain is shown on the right, according to standard radiological convention. The full three-dimensional brain
image consists of sixteen such image planes. The bottom portion of the figure shows one of these plots in greater
detail. During this interval the subject was presented a word, answered whether the word was a noun or verb, then
waited for another word.

Maximization to estimate mixture models to cluster the data. Others have used Principle
Components Analysis and Independent Components Analysis (McKeown et al., 1998) to
determine spatial-temporal factors that can be linearly combined to reconstruct the fMRI
signal.

Ø Maximum likelihood estimates would compute 
the empirical mean and variance of every 
voxel/pixel, for every every class

Ø Because there are many voxels and only a 
limited number of scans, performance 
improves by placing appropriate priors on 
(especially the variance) parameters

yn = k if data n is class k

µkd = E[xnd | yn = k]

⌫kd = Var[xnd | yn = k]


