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From Probability to Statistics
� In probability theory we compute the probability that 20 

independent flips of a fair (unbiased) coin give the sequence

� In statistics we ask: Given that we observed the sequence

what is the likelihood that the coin is fair (unbiased)?

https://hattonsoflondon.co.uk/



CS145: Lecture 20 Outline
� Frequentist Hypothesis Tests
� Bayesian Hypothesis Tests



Bayesian vs Frequentist approach
� Frequentist:

� Fixed:  The true (but unknown) state of the hypothesis in the world.
� Random:  The data, over many hypothetical repetitions of experiment.

Does the data provide enough evidence to reject a null-
hypothesis with confidence?

� Bayesian:
� Fixed:  The single data set we have observed.
� Random:  The true value of the hypothesis, given our partial knowledge.

What is the hypothesis which is most likely to be correct?



Hypothesis testing and coinflips
Over Spring 2009 two Berkeley undergraduates, Priscilla 
Ku and Janet Larwood, undertook a task to perform 
40,000 coin tosses.

It was “only” one hour per day for a semester....

Result:
Heads = 20217 times. 
Tails = 19783 times.

Question: Is the coin fair?

This outcome could 
be the result of either 
fair or biased coin



Hypothesis Testing - Intuition 
Question: Is the coin fair?
Define a test BEFORE you run the experiment:
Choose a set of outcomes that is unlikely for a fair coin.
For example, if X is the number of heads in 40,000-coin tosses:

We now run the test. 
We get:
Heads = 20217 times. 
Tails = 19783 times.

Pr(|X − 20, 000| ≥ 200) ≤ 0.05

Decision Rule: If |X − 20, 000| ≥ 200 we’ll reject
the hypothe that the coin is fair.

Using this decision rule, we reject
The hypothesis that the coin is fair



Hypothesis Testing - Intuition 
Question: Is the coin fair?
Before you run the experiment:
Define an outcome that is unlikely for a fair coin.
For example, X is the number of heads in 40,000-coin tosses:

We now run the test. 
We get:
Heads = 20217 times. 
Tails = 19783 times.

Pr(|X − 20, 000| ≥ 260) ≤ 0.01

Decision rule: if |X − 20, 000| ≥ 260 we’ll say that it is
”unlikly” that the coin is fair.

With this criteria we cannot reject 
the hypothesis that the coin is fair
This test requires stronger evidence 
to decide that the coin is not fair



Hypothesis testing steps
� Formulate your theory “in a testable way”

▪ Null Hypothesis
▪ Alternative Hypothesis

� Identify your test
▪ Test statistics

� Identify how certain you want to be
▪ Level of Significance

� Decision criteria
▪ Identify a “rejection” region
▪ p-value



What is an hypothesis
� A hypothesis is a claim  (assumption) about a  

population parameter (not the observed data):

▪ population mean

▪ population proportion

Example:  The mean monthly cell phone 
bill of this city is  μ = $42

Example:  The proportion of adults in 
this city with cell phones is  p = 68



The null hypothesis, H0

Usually refers to the default position 
• New theory does not give better explanation
• New medication is not performing better
• …

Hypothesis testing is not symmetric. It gives priority to the 
null.
The null hypothesis is rejected only if the data shows that it 
is very unlikely, otherwise the null holds.



The null hypothesis, H0

States the assumption (numerical) to be tested

where      is the probability of head
Is always about a population (or data distribution) 
parameter, NOT about a sample statistic 

Example: the coin is fair



Null hypothesis

We need to decide regarding our coin…

� H1: The alternative hypothesis  - the coin is weighted

� H0: The null hypothesis - the coin is fair

Researchers do not know which hypothesis is true. 

They must make a decision on the basis of evidence 

presented. 



Basic Frequentist Idea
� Hypotheses are fixed: they synthetize a prior belief 

on the data 

� Data is random: the analyst evaluates if the 
hypothesis is coherent with respect to the random 
data



The hypothesis testing set-up
1. Set Up Null Hypothesis (H0) and Alternative Hypothesis (Ha):

For the coin test:  H0: p= 0.5, Ha: p ≠ 0.5

2. Find a Test Statistic: a function of the data. 
For the coin test we can use the empirical frequency.

3. Define a rejection criteria – a set of values of the test statistics that is 
unlikely under the null hypothesis. 
For the coin test we can choose  |.  - 20,000|> 200.



Select your test
� Testing is a bit like finding the right recipe based on these ingredients: 

▪ Question
▪ Data type
▪ Sample size
▪ Variance known? Variance of several groups equal? 

� Good news: Plenty of tables available, e.g.,
▪ http://www.ats.ucla.edu/stat/mult_pkg/whatstat/default.htm (with 

examples in R, SAS, Stata, SPSS)

http://www.ats.ucla.edu/stat/mult_pkg/whatstat/default.htm


How to choose your test



Example of a table of tests

http://sites.stat.psu.edu/~ajw13/stat500_su_res/notes/lesson14/images/summary_table.pdf

http://sites.stat.psu.edu/~ajw13/stat500_su_res/notes/lesson14/images/summary_table.pdf


Hypothesis testing with Confidence Level
What Is Significance (Confidence) Level α? 

The Confidence Level is the probability that the test data satisfies the rejection 
rule when H0 is correct. (The probability of rejection the null when the null is true)
The most common value of α is 5%, though α = 1% is also widely used.

In the coin test we had:

Pr(|X − 20, 000| ≥ 200) ≤ 0.05

Decision Rule: If |X − 20, 000| ≥ 200 we’ll reject
the hypothe that the coin is fair.

The confidence level for that decision rule (= rejection set) in 0.05



Hypothesis testing with p-value
What Is p-value?
Instead of fixing the confidence level we can ask what is the minimum 
confidence level of a test that rejects the null. This is the p-value.
It is the probability of observing test statistics that are as extreme or more 
extreme than the present empirical data, assuming H0 is valid. 
In the coin case:

The P-value depends on the specific assumptions/test being used!

= 0.03

Null hypothesis is rejected if and only if the P-value is 
less than the significance level α.



Why is this working?
If H0 is correct (i.e., should NOT be rejected) then its p-value is uniformly 
distributed in [0,1]

Hence, P(p-value H0.             | H0 is a true null)
Thus, P(H0 rejected | H0 is a true null )

data p-value H0



Comments on hypothesis testing
� Relation Between P-Value and Significance Level α: Null hypothesis is 

rejected if and only if P-value is less than the significance level α.

� Rejection and Acceptance: Rejection of null hypothesis does not mean 
null hypothesis is wrong. It means null hypothesis is statistically 
implausible. Similarly, acceptance of null hypothesis does not mean is 
correct. It means null hypothesis is not statistically implausible.

� Statistical Significance: Statistical significance is not practical 
significance — recall the 40000 coin tosses. A small practical 
discrepancy can be statistically very significant, especially with large 
data set!



Types of error

Actual Situation

Decision

Do Not
Reject

H0

No error
(1 - α )

Type II Error
( β )

Reject
H0

Type I Error
(    )α

H0 FalseH0 True

Outcome
(Probability)

No Error
( 1 - β )



Types of error and Power of Test
� Type I Error (False Positive): Given a significance level α, what is the chance that 

null hypothesis will be rejected, even when it is indeed correct? 
Answer: P(H0 rejected |H0 is true) = α

� Type II Error (False Negative): Given a significance level α, what is the chance 
that null hypothesis will be accepted, even when it is indeed wrong?

Answer: β = 1 − P(H_0 is rejected|H1 is true )

The ideal scenario is that both α and β are small. But they are in conflict! 
Everything else being equal, one cannot reduce type I error and type II error 

simultaneously.

� Power of Test: It is defined to be 1 − β = P(H_0 is rejected||H1 is true )



Avoiding False Positives
� Usually we are looking for sufficient evidence to reject H0.

� Type I errors are implicitly more important than type II errors. 

� One usually controls type I error below some prefixed small threshold, 
and then, subject to this control, look for a test which maximizes power 
or minimizes type II error.



Testing means of normals
� Let {X1, . . ., Xn} be iid samples from N(µ, σ2), where σ2 is known but µ 

unknown. Want to perform hypothesis testing on µ. 

� We consider three scenarios.

• One-Sided Test: H0 : µ = µ0, Ha : µ > µ0
• One-Sided Test: H0 : µ = µ0, Ha : µ < µ0
• Two-Sided Test: H0 : µ = µ0, Ha : µ ≠ µ0



Testing means of Normals
� Let {X1, . . ., Xn} be iid samples from N(µ, σ2), where σ2 is known but µ 

unknown. Want to perform hypothesis testing on µ. 

� We consider three scenarios.

• Upper (Right) Tailed Test: H0 : µ = µ0, Ha : µ > µ0
• Lower (Left) Tailed Test: H0 : µ = µ0, Ha : µ < µ0
• Two-Tailed Test: H0 : µ = µ0, Ha : µ ≠ µ0



Testing means of normals: upper tailed test
� Null hypothesis H0 : µ = µ0, Alternative hypothesis Ha : µ > µ0

1. Test statistic : sample mean       . It is a Random variable!
We denote as                     a realization, that is the observed sample mean

2. p-value computation: under the null-hypothesis

where         denotes the cumulative distribution function of the normal
3. decision:  given significance level       , we reject H0 iff



Upper (right) tailed test



Use the appropriate table!
Use tables for the Standard Normal Distribution (z-tables)

Report the cumulative area from the LEFT



Example

Suppose we 
need



Testing means of normals: lower tailed test
� Null hypothesis H0 : µ = µ0, Alternative hypothesis Ha : µ < µ0

1. Test statistic : sample mean . It is a Random variable!
We denote as                     a realization, that is the observed sample mean

2. p-value computation: under the null-hypothesis

where         denotes the cumulative distribution function of the normal
3. decision:  given significance level       , we reject H0 iff 



Low (left) tailed test



Testing means of normals: two sided test
� Null hypothesis H0 : µ = µ0, Alternative hypothesis Ha : µ ≠ µ0

1. Test statistic : sample mean . It is a Random variable!
We denote as                     a realization, that is the observed sample mean

2. p-value computation: under the null-hypothesis

where          denotes the cumulative distribution function of the normal
3. decision:  given significance level       , we reject H0 iff 



Two tailed test



Extension to large samples
� The results on testing means of normals can be extended to large sample 

test where the test statistic is approximately (in the asymptotic sense) 
normally distributed.

� Common examples are given by the z-test (for >30 sample points) and the 
t-test (to be used with a lower number of samples)

� Example 1 – Testing mean: let {X1, . . ., Xn} be iid samples from some 
population distribution with unknown mean µ.

� Test statistic is sample mean    . By central limit theorem
All formulae we have obtained previously are valid. 

� When σ is unknown, one can use sample standard deviation s in place of σ

• One-Sided Test: H0 : µ = µ0, Ha : µ > µ0
• Two-Sided Test: H0 : µ = µ0, Ha : µ ≠ µ0



Extension to large samples
� The results on testing means of normals can be extended to large sample test 

where the test statistic is approximately (in the asymptotic sense) normally 
distributed.

� Common examples are given by the z-test (for >30 sample points) and the t-
test (to be used with a lower number of samples)

� Example 2 – Testing proportions: let {X1, . . ., Xn} be iid Bernoulli samples such 
that P(Xi = 1) = p, P(Xi = 0) = 1 − p

� Test statistic is sample mean    . By central limit
All formulae we have obtained previously are valid with p0 in place of µ0
and p0(1-p0) in place of σ2

• One-Sided Test: H0 : p = p0, Ha : p > p0
• Two-Sided Test: H0 : p = p0, Ha : p ≠ p0



Example: one sample z-test
� Suppose we have a sample with:

� Compute standard z-test statistic:

� Compute p-value:

� Decision: for                      we accept H0 as  



Example: two sample z-test
� Compare two population means: Do indoor cats live longer than outdoor ones?

� State hypotheses: let µI (resp., µO) denote the true population mean age of 
indoor (resp., outdoor) cats

� Test statistic: difference in population means



Example: two sample z-test
� Characterize distribution                            : 

� p-value computation: under the null hypothesis 

� Decions: for confidence                      we reject the null hypothesis



Example: Comparing Two Proportions:
� In order to test if there is any significant difference between opinions of 

countries A and B on gun ban, random samples of 100 people from 
country A and 150 people from country B were taken.

� Set up the hypotheses: let pA (resp., pB) be the fraction of people from 
country A (resp., country B) which support gun ban.

Country

A
B

H0 : pA = pB , Ha = pA ̸= pB



Example: Comparing Two Proportions:
� Test statistic: difference in sample (empirical) proportions:

� Distribution of difference of sample proportions:        is approximately 
normal with                                   and:

� Pooled estimate: Under the null hypothesis pA =pB.. Hence we can 
compute a pooled estimate for pA =pB as:

D = pA − pB =
52

100
−

95

150
= −0.113

µ = pA − pB

σD =

√

pA(1− pA)

nA

+
pB(1− pB)

nB



Example: Comparing Two Proportions:
� p-value: Under the null-hypotheis we have                             , where:

is the sample variance
Two tailed test, hence



Example: Comparing Two Proportions:
� Decision: given the confidence level                            , we accept the 

null hypothesis, and, thus we reject the alternative hypothesis. 

� There is no statistically significant evidence that suggests people from 
country A  and  country B have different opinions on gun ban. 



CS145: Lecture 20 Outline
� Frequentist  Hypothesis Tests
� Bayesian Hypothesis Tests



Bayesian vs Frequentist approach
� Frequentist:

� Fixed:  The true (but unknown) state of the hypothesis in the world.
� Random:  The data, over many hypothetical repetitions of experiment.

Does the data provide enough evidence to reject a null-
hypothesis with confidence?

� Bayesian:
� Fixed:  The single data set we have observed.
� Random:  The true value of the hypothesis, given our partial knowledge.

What is the hypothesis which is most likely to be correct?



Bayesian Hypothesis Testing

We want to choose between two mutually exclusive hypotheses:
� H=0:  Null hypothesis
� H=1:  Alternative hypothesis

Also known as classification, categorization, or discrimination.

There is some prior probability of each hypothesis:
� Probability of H=0:
� Probability of H=1:
Observed data X has a likelihood function under each hypothesis:
� Discrete data:
� Continuous data:
Formulas on following slides assume discrete X for simplicity.



Posterior Probabilities of Hypotheses
Bayesian hypothesis testing procedures assume that:
� The true value of the hypothesis is a random variable
� The prior distribution encodes previously observed data.

If no prior knowledge, set
� We have a single new observation X=x, with likelihood

Typically both hypotheses have positive probability.  How should we choose?

Compute posterior probability of hypothesis via Bayes rule:



Loss Functions
We need to formalize the notion of the cost of a mistake: 

Properties of standard loss functions used for hypothesis testing:
� Assume there is no loss for correct decisions:

� Type I Error: Positive loss for false positives or “false alarms”

� Type II Error: Positive loss for false negatives or “missed detections”

� Can encode “utilities” or “rewards” as negative losses



Example:  Spam Classification

False positive:
Some real email is

placed in Spam folder.

False negative:  
A spam email is

placed in your Inbox.

Model of words in email: naïve Bayes, Markov chain, …

Decision h=0:  Ham (not spam) h=1:  Spam



Example:  Biometric Identification

False positive:
Enter biometric data again

or enter passcode.

False negative:  
Attacker gains unauthorized 

access to phone!

Features from phone’s camera, fingerprint sensor, …

Decision h=0:  Authorized unlock h=1:  Attacker



Example:  Medical Diagnosis

False positive:
Unnecessary painful or 

costly medical tests.

False negative:  
Illness goes untreated and

you become more sick.

Results of various laboratory tests, scans, …

Decision h=0:  Healthy h=1:  Serious Illness



Bayesian Decision Theory
We are given both a probabilistic model and a loss function:
Posterior distribution:

Loss function:

The optimal decision then minimizes the posterior expected loss:



Likelihood Ratio Tests
Expected loss of guessing hypothesis h=1:

Expected loss of guessing hypothesis h=0:

The optimal decision then minimizes the posterior expected loss:



Likelihood Ratio Tests
Expected loss of guessing hypothesis h=1:

Expected loss of guessing hypothesis h=0:

It is optimal to decide h=1 if and only if:



Minimizing Probability of Error
The general likelihood ratio test picks h=1 if and only if:

If all errors are equally costly this simplifies:

Pick hypothesis with larger posterior probability to minimize number of errors



Minimizing Probability of Error
The general likelihood ratio test picks h=1 if and only if:

If all errors are equally costly, and
hypotheses have equal prior probability:

Pick hypothesis with larger likelihood to minimize number of errors



Bayesian vs Frequentist approach
� Bayesian:

� Fixed:  The single data set we have observed.
� Random:  The true value of the hypothesis, given our partial knowledge.

� Frequentist:
� Fixed:  The true (but unknown) state of the hypothesis in the world.
� Random:  The data, over many hypothetical repetitions of experiment.

� Bayesian:  Set threshold to minimize expected loss

� Frequentist: Set threshold to control false positive rate



Example:  Gaussian Hypothesis Tests

Assuming all errors are equally costly, we choose h=1 if:



Example:  Gaussian Hypothesis Tests

With some algebra, we choose h=1 if:



Example:  Gaussian Hypothesis Tests

With some algebra, we choose h=1 if:



Multivariate Gaussian Likelihoods

� Decision boundary is always a quadratic function
� If classes have same covariance, decision boundary is a linear function


