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From Probability to Statistics

In probability theory we compute the probability that 20
independent flips of a fair (unbiased) coin give the sequence

HTTHTHTHHTTHTHTHHTTT
In statistics we ask: Given that we observed the sequence

HTTHTHTHETTHTHTHHET T

what is the likelihood that the coin is fair (unbiased)?

https://hattonsoflondon.co.uk/



CS145: Lecture 20 Outline

Frequentist Hypothesis Tests
Bayesian Hypothesis Tests



Bayesian vs Frequentist approach

Frequentist:
Fixed: The true (but unknown) state of the hypothesis in the world.
Random: The data, over many hypothetical repetitions of experiment.

Does the data provide enough evidence to reject a null-
hypothesis with confidence?

Bayesian:
Fixed: The single data set we have observed.
Random: The true value of the hypothesis, given our partial knowledge.

What is the hypothesis which is most likely to be correct?



Hypothesis testing and coinflips

Over Spring 2009 two Berkeley undergraduates, Priscilla
Ku and Janet Larwood, undertook a task to perform
40,000 coin tosses.

It was “only” one hour per day for a semester....

Result:

Heads = 20217 times. This outcome could

Tails = 19783 times. be the result of either
fair or biased coin

Question: Is the coin fair?



Hypothesis Testing - Intuition

Question: Is the coin fair?

Define a test BEFORE you run the experiment:
Choose a set of outcomes that is unlikely for a fair coin.
For example, if X is the number of heads in 40,000-coin tosses:

Pr(]X — 20,000| > 200) < 0.05

Decision Rule: If | X — 20,000| > 200 we’ll reject
the hypothe that the coin is fair.

We now run the test. Using this decision rule, we reject

We get: _ > I .
Heads = 20217 times. The hypothesis that the coin is fair

Tails = 19783 times.



Hypothesis Testing - Intuition

Question: Is the coin fair?

Before you run the experiment:
Define an outcome that is unlikely for a fair coin.
For example, X is the number of heads in 40,000-coin tosses:

Pr(|X — 20,000| > 260) < 0.01

Decision rule: if | X — 20,000| > 260 we’ll say that it is
”unlikly” that the coin is fair.

We now run the test. With this criteria we cannot reject
We get: | the hypothesis that the coin is fair
Heads = 20217 times. This test requires stronger evidence

Tails = 19783 times. to decide that the coin is not fair



Hypothesis testing steps

Formulate your theory “in a testable way”
* Null Hypothesis
= Alternative Hypothesis
|dentify your test
» Test statistics
|dentify how certain you want to be
= Level of Significance

Decision criteria
= |dentify a “rejection” region
= p-value



What is an hypothesis

A hypothesis is a claim (assumption) about a
population parameter (not the observed data):

= population mean

Example: The mean monthly cell phone
bill of this city is p = $42

= population proportion

Example: The proportion of adults in
this city with cell phonesis p = 68




The null hypothesis, H,

Usually refers to the default position
* New theory does not give better explanation
 New medication is not performing better

Hypothesis testing is not symmetric. It gives priority to the

null.
The null hypothesis is rejected only if the data shows that it

IS very unlikely, otherwise the null holds.



The null hypothesis, H,

States the assumption (numerical) to be tested

Example: the coin is fair H() . D — 0.5

where o, Is the probability of head

Is always about a population (or data distribution)
parameter, NOT about a sample statistic

H02p20.5 H0ﬁ205

v X




Null hypothesis

We need to decide regarding our coin...
Hq: The alternative hypothesis - the coin is weighted
Ho: The null hypothesis - the coin is fair

Researchers do not know which hypothesis is true.

They must make a decision on the basis of evidence

presented.



Basic Frequentist Idea

Hypotheses are fixed: they synthetize a prior belief
on the data

Data is random: the analyst evaluates if the
hypothesis is coherent with respect to the random
data



The hypothesis testing set-up

1. Set Up Null Hypothesis (Hy) and Alternative Hypothesis (H,):
For the coin test: H,: p=0.5, H;: p # 0.5

2. Find a Test Statistic: a function of the data.
For the coin test we can use the empirical frequency.

3. Define a rejection criteria — a set of values of the test statistics that is
unlikely under the null hypothesis.
For the coin test we can choose |P- 20,000|> 200.



Select your test

Testing is a bit like finding the right recipe based on these ingredients:
Question

Data type

Sample size

Variance known? Variance of several groups equal?

Good news: Plenty of tables available, e.g.,

= http://www.ats.ucla.edu/stat/mult_pkg/whatstat/default.ntm (with
examples in R, SAS, Stata, SPSS)



http://www.ats.ucla.edu/stat/mult_pkg/whatstat/default.htm

How to choose your test

Population

One sample

One
sample
t-ests

Note: Itis

recommended to
use a two-tailed
test, unless you
may have good
reasons to pick a
one-tailed test!

(NJ

Wilcoxon
rank sum
test

Paired
t-test

Unpaired
t-test

(N

Wilcoxon
matched
pairs test

Welch’ corrected
unpaired t-test

Repeated
measures
one-way
ANOVA
Mann-
Whitney
test

Friedman

One-way
ANOVA

Kruskal-
Wallis test



Example of a table of tests

Summary Table for Statistical Techniques

Inference Parameter | Statistic et Examples Analysis o— Conditions
Data = Comman
®  What is the average| 1-sample t-interval S da i el
One weight of adults? s >B‘:;ic : lirapproxlmau, e
Estimating a Population Sample mean . e Whatisthe average| Y E£1,_, —— e
T Numerical ot statsucs e have a large sample
Mean Mean p Yy cholesterol level of n .
p >l-sample t size (n = 30)
adult females?
- Is the average GPA | H,: u=pn,
of juniors at Penn Ho:p=p, orHozp >p, 3 o
One State higher than or Huotp < pg Stat * ‘ir pproximately nom
e a— S E— Sample me Numerical g The one sample t test: E— e have a large sample
Mean Mean p y e Isthe average — statistics =5
: Y—l, & size (n = 30)
Winter temperature | t = ———= >1-sample t
in State College 7
less than 42° F? ~/n
e What is the
One S proportion of males | 1-proportion Z-interval Stat
- = Population . e in the world? Y r— >Basic
IE::H:::‘IZE a Propoction Proportion ?Ba}t.gox_')lcal e Whatis the gtz ,Tt(l i) iecaryarr e - have ;: least 5
port - 2 mary proportion of - n >1-sample in cach category
students that smoke’ proportion
H,: t=m,
Hy:t#=xwx, orHy: T > =,
. Is the proportion o Hoom—m
One . of females different The on; propo ru;n Z-test- Stat
Test about a S g Categorical from 0.5? ) >Basic
. Proportion Proportion (Bi ) e Is the proportion of - statistics e nmn,=S5and n(l-n,)=
P T - > students who fail T—=R, >1-sample
Stat 500 less than proportion

0.17?

N ’7[0(1—7[0)
n

http://sites.stat.psu.edu/~ajw13/stat500 su res/notes/lessoni4/images/summary table.pdf



http://sites.stat.psu.edu/~ajw13/stat500_su_res/notes/lesson14/images/summary_table.pdf

Hypothesis testing with Confidence Level

What Is Significance (Confidence) Level a?

The Confidence Level is the probability that the test data satisfies the rejection
rule when Hy is correct. (The probability of rejection the null when the null is true)

The most common value of a is 5%, though a = 1% is also widely used.

In the coin test we had:

Pr(]X — 20,000| > 200) < 0.05

Decision Rule: If | X — 20,000| > 200 we’ll reject
the hypothe that the coin is fair.

The confidence level for that decision rule (= rejection set) in 0.05



Hypothesis testing with p-value

What Is p-value?
Instead of fixing the confidence level we can ask what is the minimum
confidence level of a test that rejects the null. This is the p-value.

It is the probability of observing test statistics that are as extreme or more
extreme than the present empirical data, assuming Hg is valid.

In the coin case:

(] 1] 20217 1
poatie =210 T 51 = 10000~ 2
1
:Pr< = 20.005425) - 0.03

The P-value depends on the specific assumptions/test being used!

Null hypothesis is rejected if and only if the P-value is
less than the significance level a.




Why is this working?

If H, is correct (i.e., should NOT be rejected) then its p-value is uniformly

distributed in [0,1]

data ——

Statistical
Test

—> p-value Hj

0 1

confidence level (Y

Hence, P(p-value Hy < (¥.| Hyis atrue null) — ¢y
Thus, P(H, rejected | Hy is a true null) = (¥



Comments on hypothesis testing

Relation Between P-Value and Significance Level a: Null hypothesis is
rejected if and only if P-value is less than the significance level a.

Rejection and Acceptance: Rejection of null hypothesis does not mean
null hypothesis is wrong. It means null hypothesis is statistically
implausible. Similarly, acceptance of null hypothesis does not mean is
correct. It means null hypothesis is not statistically implausible.

Statistical Significance: Statistical significance is not practical
significance — recall the 40000 coin tosses. A small practical
discrepancy can be statistically very significant, especially with large
data set!



Types of error

Outcome
(Probability)

Actual Situation
Decision H, True H, False
Do Not N T IE
s O error ype YYor
(1-a) (B)

H,
Reject Type I Exrox No Error

H, () (1-B)




Types of error and Power of Test

Type | Error (False Positive): Given a significance level a, what is the chance that
null hypothesis will be rejected, even when it is indeed correct?

Answer: P(H, rejected |Hgis true) = a

Type Il Error (False Negative): Given a significance level a, what is the chance
that null hypothesis will be accepted, even when it is indeed wrong?

Answer: B =1 - P(H_O is rejected|H; is true)

The ideal scenario is that both a and 3 are small. But they are in conflict!
Everything else being equal, one cannot reduce type | error and type Il error
simultaneously.

Power of Test: It is defined to be 1 — 3 = P(H_O is rejected||H; is true)



Avoiding False Positives

Usually we are looking for sufficient evidence to reject H,,.
Type | errors are implicitly more important than type |l errors.

One usually controls type | error below some prefixed small threshold,
and then, subject to this control, look for a test which maximizes power
or minimizes type Il error.



Testing means of normals

Let {Xi, ..., X} beiid samples from N(u, 0°), where o is known but p
unknown. Want to perform hypothesis testing on p.

We consider three scenarios.

* One-Sided Test: Hy : p =g, Hy : U > Mg
* One-Sided Test: Hy : p =g, H, : M < Mg
* Two-Sided Test: Hy: 4 = Mg, Hy : P 2 Yo



Testing means of Normals

Let {Xi, ..., X} beiid samples from N(u, 0°), where o is known but p
unknown. Want to perform hypothesis testing on p.

We consider three scenarios.
* Upper (Right) Tailed Test: Hy : g = Hg, Hy : B > Mg

* Lower (Left) Tailed Test: Hy: 4 = Mg, Hy i P < Yo
* Two-Tailed Test: Hy : g = Mg, Hy : M # Hg



Testing means of normals: upper tailed test
Null hypothesis H, : py = Uy, Alternative hypothesis H, : p > [

1. Test statistic : sample mean X . It is a Random variable!
We denoteas I ~ X a realization, that is the observed sample mean

2. p-value computation: under the null-hypothesis X ~ N(Iuo’ gz/n)
_ Tr — T —
p—wvalue=P(X >z)=1—-® Ho\ g [ — Ho
o/ o/\/n
where(I)() denotes the cumulative distribution function of the normal
3. decision: given significance level (Y, we reject Hy iff (v 2 D — value




Upper (right) tailed test

a=0.05

Upper-Tailed
Test

z

0.10

1.282

0.05

1.645

0.025

1.960

0.010

2.326

-2 -1 0 1 1.645 2

The decision rule is: Reject Hg if Z > 1.645.

0.005

2.576

0.001

3.090

0.0001

3.719




Use the appropriate table!

Use tables for the Standard Normal Distribution (z-tables)

Report the cumulative area from the LEFT

| POSITIVE z Scores

(continued) Cumulative Area from the LEFT
z

FGATIVE z Scores

.00 .01 02 .03 .04 .05 .06 .07 .08 .09 z 0

0.0 .5000 .5040 .5080 .5120 .5160 5199 .5239 .5279 5319 15359

0.1 5398 5438 5478 5517 5557 -5596 -5636 5675 5714 5753 : Standard Normal (z) Distribution: Cumulative Area from the LEFT

0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141

0.3 6179 6217 6255 .6293 .6331 6368 .6406 .6443 6480 .6517 .00 01 02 03 04 05 06 07 08 09

0.4 6554 6591 6628 .6664 .6700 .6736 6772 .6808 .6844 .6879

0.5 6915 6950 6985 7019 7054 7088 123 57 190 7224

0.6 7257 7291 7324 7357 7389 7422 7454 7486 7517 7549

07 7580 7611 7642 7673 7704 7734 7764 7794 7823 7852 .0001

0.8 7881 7910 7939 7967 7995 .8023 .8051 .8078 .8106 .8133 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0002

0.9 8159 8186 8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389 .0005 .0005 .0005 .0004 .0004 .0004 .0004 .0004 0004 0003

1.0 8413 8438 8461 .8485 .8508 8531 .8554 .8577 .8599 .8621 .0007 .0007 .0006 .0006 .0006 .0006 .0006 .0005 .0005 0005

5 .8643 8665 8686 .8708 8729 .8749 .8770 .8790 .8810 .8830 .0010 .0009 .0009 .0009 .0008 .0008 .0008 .0008 .0007 .0007
=30 .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0010 .0010
=75 .0019 .0018 .0018 .0017 .0016 .0016 .0015 .0015 .0014 .0014
28 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019
=21 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026
=26 .0047 .0045 .0044 .0043 .0041 .0040 .0039 0038 .0037 .0036
=25 .0062 .0060 .0059 .0057 .0055 0054 0052 0051 * .0049 .0048
—2.4 .0082 .0080 .0078 .0075 .0073 .0071 0069 .0068 0066 .0064
=) .0107 .0104 .0102 .0099 .0096 .0094 .0091 0089 .0087 .0084




Example

NEGATIVE z Scores

Standard Normal (2) Distribution: Cumulative Area from the LEFT

4 .00 .01 .02 .03 .04 .05 .06 .07 .08 .09
-3.50
and

lower .0001

-34 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0002
—3).8) .0005 .0005 .0005 .0004 .0004 .0004 .0004 .0004 .0004 .0003
=32 .0007 .0007 .0006 .0006 .0006 .0006 .0006 .0005 .0005 .0005
—3.1 .0010 .0009 .0009 .0009 .0008 .0008 .0008 .0008 .0007 .0007
-3.0 .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0010 .0010
229 .0019 .0018 .0018 .0017 .0016 .0016 .0015 .0015 .0014 .0014
—-2.8 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019
2.7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026
-2.6 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037 .0036
=05 .0062 .0060 .0059 .0057 .0055 0054 .0052 .0051 * .0049 .0048
2.4 .0082 .0080 .0078 .0075 .0073 .0069 .0068 .0066 .0064
=23 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084

Suppose we
need ¢ (—2.45)



Testing means of normals: lower tailed test
Null hypothesis H, : py = Uy, Alternative hypothesis H, : p < g

1. Test statistic : sample mean X . It is a Random variable!
We denoteas I ~ X a realization, that is the observed sample mean

2. p-value computation: under the null-hypothesis X N(Iuo, 0‘2/72)

p—wvalue =P(X <) = (:13 al
o/\/n
where (I)O denotes the cumulative distribution function of the normal
3. decision: given significance level (Y, we reject Hy iff (v 2 D — value




Low (left) tailed test

Lower-Tailed
Test
a Z
0.10 |-1.282
0.05 |-1.645
0.025 |-1.960
0.010 |-2.326
0.005 | -2.576
3 2 1 0 1 2 3
0.001 |-3.090
The decision rule is: Reject Hg if Z < 1.645. 0.0001)-3.719




Testing means of normals: two sided test
Null hypothesis H, : p = Uy, Alternative hypothesis H, : p # [

1. Test statistic : sample mean X . It is a Random variable!
We denoteas I ~ X a realization, that is the observed sample mean

2. p-value computation: under the null-hypothesis X ~J N(Iuo’ 0‘2/72)

_ B €T — 0
p —value = P(| X — po| > | — pol) = 29 7= ol
o/\/n
where (I)O denotes the cumulative distribution function of the normal
3. decision: given significance level (Y, we reject Hy iff (v 2 D — value




Two tailed test

0/2=0.025

The decision rule is: Reject Hg if Z <-1.960 or if Z > 1.960.

Two-Tailed
Test

0.20

1.282

0.10

1.645

0.05

1.960

0.010

2.576

0.001

3.291

0.0001

3.819




Extension to large samples

The results on testing means of normals can be extended to large sample
test where the test statistic is approximately (in the asymptotic sense)
normally distributed.

Common examples are given by the z-test (for >30 sample points) and the
t-test (to be used with a lower number of samples)

Example 1 — Testing mean: let {Xy, . . ., X} be iid samples from some
population distribution with unknown mean p.

* One-Sided Test: Hy : Y = Mg, Ha : B > Mo
* Two-Sided Test: Hg : 4 =Yg, Ha i U # Ho
Test statistic is sample mean ¥ . By central limit theoremX — N (p, 02 /n)
All formulae we have obtained previously are valid.
When o is unknown, one can use sample standard deviation s in place of o



Extension to large samples

The results on testing means of normals can be extended to large sample test
where the test statistic is approximately (in the asymptotic sense) normally
distributed.

Common examples are given by the z-test (for >30 sample points) and the t-
test (to be used with a lower number of samples)

Example 2 — Testing proportions: let {Xy, . . ., X} be iid Bernoulli samples such
that PX;=1)=p,PX=0=1-p

* One-Sided Test: Hy: p = pg, Ha: P > Po
* Two-Sided Test: Hg: p =pg, Ha: p # Po

Test statistic is sample mean X . By central limit X — N(p,p(1 —p)/n)
All formulae we have obtained previously are valid with pg in place of yg
and py(1-po) in place of 02



Example: one sample z-test

Suppose we have a sample with: T = (.52, 0 = 7.89, n = 27

Hqy:p=0, Hy:pn>0
Compute standard z-test statistic:

- o/vn 7.89/4/27
Compute p-value: ®(—z) = ®(—0.3425 = 0.366)

= (.3425

Z

Decision: for « = (.00 we accept Hyas 0.366 > 0.05



Example: two sample z-test

Compare two population means: Do indoor cats live longer than outdoor ones?

Cats | Sample size | Mean age | Sample Std
Indoor 64 14 4
Wild 36 10 5

State hypotheses: let Y, (resp., Ho) denote the true population mean age of
indoor (resp., outdoor) cats

Ho:pr=po, Ha:pr > po

Test statistic: difference in population means

d=Z;—To=14—10=14



Example: two sample z-test
Characterize distribution D = X; — X

2 2 2 2
or 05 1 3
%2 0 gy
°D 1 1o 27 10

p-value computation: under the null hypothesis [) ~ N(()’ 0'%)

4
p —value = P(N(0,0.97°) >4) =1 - & (W) < 0.00003

Decions: for confidence ¢ = ().()7 we reject the null hypothesis



Example: Comparing Two Proportions:

In order to test if there is any significant difference between opinions of
countries A and B on gun ban, random samples of 100 people from
country A and 150 people from country B were taken.

Country | Sample size Favor Oppose
A 100 52 48
B 150 95 55

Set up the hypotheses: let p, (resp., pg) be the fraction of people from
country A (resp., country B) which support gun ban.

Hy:pa=pp, H,=pa#DpB




Example: Comparing Two Proportions:

Test statistic: difference in sample (empirical) proportions:

_ 52 905
D=p,—Pp=— — — =—0.113
PA=PB =700 150 ~

Distribution of difference of sample proportions: [) is approximately
normal with W = PA — PB and:

UD_\/pA(l—pA) pe(1 —pB)

+
na ngp

Pooled estimate: Under the null hypothesis p, =pg . Hence we can
compute a pooled estimate for py =pg as:
02 + 95

5 — — 0.588
P =700+ 150




Example: Comparing Two Proportions:

p-value: Under the null-hypotheis we have D ~ N(O, O'%) , where:
1 1

op = p(1—p) (+>

neg ng
= 0.588(1 — 0.588)(100~* + 150~ 1) = 0.0040373316

O% is the sample variance
Two tailed test, hence

_ _ CZ—
p —values = P(|D — po| > |d — po|) = 2 (_| 0M0|)
D
B 0.113
B 0.6354

) = 0.075



Example: Comparing Two Proportions:

Decision: given the confidence level (¥ = 005 , we accept the
null hypothesis, and, thus we reject the alternative hypothesis.

There is no statistically significant evidence that suggests people from
country A and country B have different opinions on gun ban.



CS145: Lecture 20 Outline

Frequentist Hypothesis Tests
Bayesian Hypothesis Tests



Bayesian vs Frequentist approach

Frequentist:
Fixed: The true (but unknown) state of the hypothesis in the world.
Random: The data, over many hypothetical repetitions of experiment.

Does the data provide enough evidence to reject a null-
hypothesis with confidence?

Bayesian:
Fixed: The single data set we have observed.
Random: The true value of the hypothesis, given our partial knowledge.

What is the hypothesis which is most likely to be correct?



Bayesian Hypothesis Testing

Also known as classification, categorization, or discrimination.

We want to choose between two mutually exclusive hypotheses:
H=0: Null hypothesis

H=1: Alternative hypothesis

There is some prior probability of each hypothesis:

Probability of H=0:  pr(0) = ¢

Probability of H=7: py(1) =1—¢q

Observed data X has a /ikelihood function under each hypothesis:
Discrete data: pxia(z |0), pxja(z|1)
Continuous data:  fxju(z]0), fxja(z|1)

Formulas on following slides assume discrete X for simplicity.



Posterior Probabilities of Hypotheses

Bayesian hypothesis testing procedures assume that:

The true value of the hypothesis is a random variable

The prior distribution encodes previously observed data.

If no prior knowledge, set pg(0) =py(1) =0.5
We have a single new observation X=x, with /ikelihood
pxa(r]0), pxE(r]|1)

Compute posterior probability of hypothesis via Bayes rule:

pX\H(ﬂf | h)pw (h)
px(z)

px(z) = PH(O)Z?X|H(CE‘ 1 0) ‘|‘pH(1)PX\H($ 1)

Typically both hypotheses have positive probability. How should we choose?

pux(h|z) = px (0] ) +pax(1]z) =1



. oss Functions

We need to formalize the notion of the cost of a mistake:

L(h, g) = cost of predicting hypothesis g when h is true.

Properties of standard /oss functions used for hypothesis testing:
Assume there is no loss for correct decisions:

L(0,0) = L(1,1) = 0
Type | Error: Positive loss for false positives or “false alarms”
L(O, 1) = Xo1 > 0
Type Il Error: Positive loss for false negatives or “missed detections”

L(1,0) = Ao >0

Can encode “utilities” or “rewards” as negative losses



Example: Spam Classification

px|a(x | h) =  Model of words in email: naive Bayes, Markov chain, ...
Decision h=0: Ham (not spam) h=1. Spam

L(O, O) =0 L(1,0) = Ao >0
g — 0 False negative:

A spam email is
placed in your Inbox.

L(O, 1) = Ag1 > 0 L(1,1)=0

False positive:
Some real email is
placed in Spam folder.




Example: Biometric Identification

fxu(x | h) = Features from phone’s camera, fingerprint senso, ...

Decision h=0: Authorized unlock h=1: Attacker
L(O, O) =0 L(1,0) = Ao >0
g = 0 False negative:

Attacker gains unauthorized
access to phone!

L(O, 1) = Ag1 > 0 L(1,1)=0

False positive:
Enter biometric data again
or enter passcode.




Example: Medical Diagnosis

fxu(x | h) = Results of various laboratory tests, scans, ...

_ Decision h=0: Healthy h=1: Serious lliness
L(O, O) =0 L(1,0) = Ao >0
g — 0 False negative:

lliness goes untreated and
you become more Sick.

L(O, 1) = Ag1 > 0 L(1,1)=0

False positive:
Unnecessary painful or
costly medical tests.




Bayesian Decision Theory

We are given both a probabilistic model and a loss function:

Posterior distribution: PXx| H(CC ’ h)pH (h>
pH|X(h | z) =
N px ()
Loss function: L(O, 1) _ )\01 > O L(LO) — )\10 > 0

The optimal decision then minimizes the posterior expected loss:

1
6(x) = argmin E[L(h,g) | X = 2] = argmin » L(h, g)pmx (h | z)
g g h—0



Likellhood Ratio Tests

Expected loss of guessing hypothesis h=T7:

L0, 1)px (0| z) + L(1, 1)pr x (1 | ) = Ao1pm x (0 | )
Expected loss of guessing hypothesis h=0:

L(0,0)prx (0| ) + L(1,0)ppx (1 | ®) = Mopmx (1 | )

The optimal decision then minimizes the posterior expected loss:

1
5(x) = argmin E[L(h,g) | X = 2] = argmin Y L(h, g)pmx (h | z)
g g h—0



Likellhood Ratio Tests

Expected loss of guessing hypothesis h=T7:

L0, 1)px (0| z) + L(1, 1)pr x (1 | ) = Ao1pm x (0 | )
Expected loss of guessing hypothesis h=0:

L(0,0)prx (0| z) + L(1,0)pm x (1 | ) = Aopm x (1| )
It is optimal to decide h=17 if and only if:

>\01pH|X(O | z) < /\IOpH|X(1 | x)

iiig ; (1); - (%C) ' (i—?g) pi(0) = q




Minimizing Probability of Error

The general /ikelihood ratio test picks h=1 if and only if:

Aopm|x (1
pX|H(5’3

r) > Mo1pmx (0] x)

1)

PX|H(93'

If

pX|H(37

0) =

1)>

10X|H(m

0) =

= (753)

(

Ao1
A10

this simplifies:
prx(1|z) > pux (0| z)

9
1 —gq

)

)

pu(0) =q

Mo =M1 =1



Minimizing Probability of Error

The general /ikelihood ratio test picks h=1 if and only if:

Mopmix (1] x) > Ao1pm|x (0| z)
px|a(r|1) < ( q ) <)\01)
- . —_— O p—
pxia(x|0) — \1—gq A10 pr(0) =4
If , and Ao = )\0 — 1]
= 0.5
prH(Qj 1) > 1
pX|H(37 0)




Bayesian vs Frequentist approach

Bayesian:
Fixed: The single data set we have observed.
Random: The true value of the hypothesis, given our partial knowledge.

Frequentist:
Fixed: The true (but unknown) state of the hypothesis in the world.
Random: The data, over many hypothetical repetitions of experiment.

Bayesian: Set threshold to minimize expected loss L(h, g)
_ (0)\ (L(0,1)
o= (oo (Z)
Frequentist: Set threshold to control false positive rate

P(L(X)>&h=0)=qa



Example: Gaussian Hypothe3|s Tests

pu(0) =q W T e
1 _;(mf o —— | 0. o=t —|3
fX\H(lU ’ 1) = e 2\ o1 NI | =
V2mof :
1 _l(m)Q 0 | —
fain(@|0) = —pge 2] o
V/2mo?2 LN \ ;

.....................
————————————————

Assuming all errors are equally costly, we choose h=7 if:

fxm (x| 1) q B q
o 2 () o5l
log(fx (x| 1)) —log(fxu(z ] 0)) > ¢




Example' Gaussian Hypothesis Tests

log(fx|m(x i) = ——log(%) - llog( 0= % (w _M)

O‘ .

Suppose that 01 = 09 = o and u; > ug :

log(fX|H(£L' 1)) — 10g(fX|H(33 10)) >
1 1

(= )+ g (@ o) > ¢

With some algebra, we choose h=1 if:

N H1 + o olc

B p1 — Mo

“po = =2 pn =42




Example: Gaussian Hypothesis Tests

. 1 1 2 L (x— i i
log(fxu(w]1)) = B log(2) — 2 log(a) — 9 ( o, )

Suppose that u; = o =0 and o1 > oy :
log(fxm (x| 1)) —log(fxg(x | 0)) > c

2 2
X X 1 5

1 2
202 " 202 §log(01)+510g(00)2:c

With some algebra, we choose h=1 if:

Qo202 o
2 190 1
7> — 5 <c+log—>




Multivariate Gaussian Likelihoods

Parabolic Boundary Linear Boundary

_o 0 2

| d 1 1 _
log(fxm(z]1)) = —5 log(2m) — 5 108 2] — 5(1’ — i) 57 (@ — )

Decision boundary is always a quadratic function
If classes have same covariance, decision boundary is a linear function



