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Fun Quiz 
Ø ENIAC (Electronic Numerical Integrator and Computer) was the 

first programmable, electronic, general-purpose digital computer, 
completed in 1945.

ØWhat was ENIAC mainly used for?
1. Breaking codes
2. Image processing
3. Monte Carlo (probabilistic) simulations 
4. Watching movies

https://en.wikipedia.org/wiki/ENIAC



Fun Quiz 
Ø ENIAC Electronic Numerical Integrator and Computer) was the 

first programmable, electronic, general-purpose digital computer, 
completed in 1945.

ØWhat was ENIAC mainly used for?
1. Breaking codes
2. Image processing
3. Monte Carlo (probabilistic) simulations 
4. Watching movies

 Von Neumann, Nicholas Metropolis and others programmed 
the ENIAC computer to perform the first fully automated Monte Carlo 
calculations, https://en.wikipedia.org/wiki/ENIAC

https://en.wikipedia.org/wiki/ENIAC



Fun Quiz 2
Ø I flip 3 fair (½, ½) coins. I show you that two of the coins came up Head. 

What is the probability that the third coin is also Head?

1. 1/2
2. 1/3
3. 1/4
4. 1/8



Fun Quiz 2
Ø I flip 3 fair (½, ½) coins. I show you that two of the coins came up Head. 

What is the probability that the third coin is also Head?

1. 1/2
2. 1/3
3. 1/4
4. 1/8

Outcomes of flipping 3 coins:
TTT   HTT   THT  TTH   - non of these outcomes
HHH  THH  HTH  HHT - 1 out of these 4 outcomes



CS145: Lecture 0 Outline
ØWhy probability and statistics in CS?
ØCourse overview: Probability and statistics - key 

concepts & applications in CS
ØCourse prerequisites 
ØCourse work and evaluation
ØWho should take this class?
ØRegistration, administration, tech details



Why Probability?

``It is remarkable that this science, which originated in the consideration
of games and chances, should have become the most important object of
human knowledge... The most important questions of life are, for 
the most part, really only problems of probability’’

                                  Pierre Simons, Marquis de Laplace (1749-1827). 

 



Why Probability?

``It is remarkable that this science, which originated in the consideration
of games and chances, should have become the most important object of
human knowledge... The most important questions of life are, for 
the most part, really only problems of probability’’

                                  Pierre Simons, Marquis de Laplace (1749-1827). 

Laplace didn’t know about:
• Genomics and DNS recombination
• Quantum mechanic (and computing)
• Stochastic finance
• Machine learning and AI
• Statistics



Why Probability?
Most advanced computer applications involve randomization:

Ø Secured web connections are probabilistically secured

Ø Web search engines apply statistical inference

Ø Computer games would be boring without randomization

Ø Spam filters, recommendation systems, web advertising and face recognition 

use (statistical) machine learning

Ø Efficient data structures are often randomized (e.g., hashing)

Ø Computational finance, computational biology, climate and weather forecast …. 



Do I need to understand probability?
Ø  Do I really need to study probability and statistics? 
Ø Isn’t it a lot of theory? 
ØCannot I just use common sense?



Probability Is Not Intuitive
Ø I flip 3 fair (½, ½) coins. I show you that two of the coins came up Head. 

What is the probability that the third coin is also Head?

1. 1/2
2. 1/3
3. 1/4
4. 1/8



Probability Is Not Intuitive
Ø I flip 3 fair (½, ½) coins. I show you that two of the coins came up Head. 

What is the probability that the third coin is also Head?

1. 1/2
2. 1/3
3. 1/4
4. 1/8

Outcomes of flipping 3 coins:
TTT   HTT   THT  TTH   - non of these outcomes
HHH  THH  HTH  HHT - 1 out of these 4 outcomes



Daniel Kahneman was awarded the 
2002 Nobel Prize in Economic Sciences for 
“…. challenging the assumption of human 
rationality prevailing in decision-making 
under uncertainty”.

Probability is Often Counterintuitive



CS145: Lecture 0 Outline
ØWhy probability and statistics in CS?
ØCourse overview: Probability and statistics - key 

concepts & applications
ØCourse prerequisites: 
ØCourse evaluation:
ØWho should take this class?
ØRegistration, administration, tech details



Events and Probabilities

Ø Sample spaces:  When a random event happens, what is the 
set of all possible outcomes?  May be discrete or continuous.

Ø Conditioning:  Suppose I observe some data.  How does my 
probability model change?

Ø Independence:  Is there any relationship between pairs of 
variables in my model?  Would data provide knowledge?

Venn diagram for all 
combinations of 3 

binary (true/false) events.

Weather example:
Ø Raining or not
Ø Sunny or not
Ø Hot or not



Bayesian Spam Filtering
ØBinary classification: Is this 

e-mail useful (ham) or spam?
ØTraining data: Messages 

previously marked as spam
ØEstimate:  Probability that 

certain words are used in spam 
and non-spam emails

ØClassify: Conditional probability 
that a mail is spam given the 
words in the mail.

Spam Filter Express: http://www.spam-filter-express.com/



Discrete Random Variables
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Ø Suppose I toss a coin 10 times.
Ø The number of tosses that come up heads, rather than tails,

is an example of a discrete random variable.
Ø A probability mass function gives the (non-negative) probability 

of each possible outcome.  These probabilities sum to one.



Joint, Marginal, & Conditional Distributions

y

z

Ø Joint Distribution:  Probability of each possible outcome.
Ø Marginal Distribution:  If some variables are not observed 

and not relevant, how do I remove them from the model?
Ø Conditional Distribution:  What if I observe some data?

Example: (age, height, weight)



Expectation, Variance, & Standard Deviation
What can you expect, and how confident can you be with 
this expectation?

https://www.inchcalculator.com/binomial-distribution-calculator/

200,000 runs. https://cetking.com/solving-standard-deviations-sums-without-formula/



Continuous Random Variables
CDF: cumulative
distribution function

PDF: probability
density function

Model processes or 
data which are encoded 
as real numbers:
temperature,
commodity price,
DNA expression level,
light on camera sensor,
…



Gaussian (Normal) Distributions

Summaries:  Mean, median, mode, variance, standard deviation, …



“Nature’s Distribution”

Ø In a large population, how likely is a person to be much taller than average?
Ø How likely is a request on my web server to be much larger than average?

A group of women arranged by height, ScienceBlogs.com Feb. 2009.



Central Limit Theorem

http://www.animatedsoftware.com/statglos/sgcltheo.htm

The Central Limit Theorem

Theorem (DeMoivre-Laplace-Liapouno↵)

Let x1, ...., xn be n independent, identically distributed random
variables with mean µ and variance �2. Let X̄n = 1

n

Pn
i=1 xi , then

P(a  X̄n � µ

�/
p
n

 b) ! �(b)� �(a)

as n ! 1,

http://www.animatedsoftware.com/statglos/sgcltheo.htm


But not all distributions are Normal…

Frequency of using English words



Monte Carlo Methods

http://marcoagd.usuarios.rdc.puc-rio.br/quasi_mc.html
https://www.mathworks.com/matlabcentral/fileexchange/
55306-monte-carlo-estimation-examples-with-matlab

https://www.mathworks.com/matlabcentral/fileexchange/


Monte Carlo Methods

Hurricane Sandy made landfall in 
New Jersey on October 29, 2012.Weather Wisdom, Boston.com



Markov Chains

Markov Property:  Conditioned on the present, past & future are independent

p(x) = p(x1)p(x2 | x1)p(x3 | x2)p(x4 | x3) · · · = p(x1)
TY

t=2

p(xt | xt�1)

Ø Building block for modeling random processes that 
evolve and change over time.

Ø What is the long-term behavior of some process?
What is the probability of reaching a good state?  A bad state?

Ø Allows agents to reason about future consequences of actions.



Markov Chains for Robot Navigation
Simultaneous Localization & Mapping (FastSLAM, Montemerlo 2003) 

 
 
 
 
 
 
An online SLAM algorithm factorize that formula to estimate the robot state at current 
time t  
 
 
 
 
 
 
FastSLAM approach 
 
It solves the SLAM problem using particle filters. Particle filters are mathematical 
models that represent probability distribution as a set of discrete particles which occupy 
the state space. 
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Fig1: Diagram of a SLAM technique 

Fig2: probability distribution (ellipse) as particle set (red dots) 
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Particle fitler SLAM 
 
Overview 
 
Simultaneous localization and mapping (SLAM) is a technique used by robots and 
autonomous vehicles to build up a map within an unknown environment while at the 
same time keeping track of their current position. This is not as straightforward as it 
might sound due to inherent uncertainties in discerning the robot's relative movement 
from its various sensors. If at the next iteration of map building the measured distance 
and direction travelled has a slight inaccuracy, then any features being added to the map 
will contain corresponding errors. If unchecked, these positional errors build 
cumulatively, grossly distorting the map and therefore the robot's ability to know its 
precise location. There are various techniques to compensate for this such as recognising 
features that it has come across previously and re-skewing recent parts of the map to 
make sure the two instances of that feature become one. Some of the statistical 
techniques used in SLAM include Kalman filters, particle filters  and scan matching of 
range data. 
 
Sensors characteristics 
 
A sensor is characterized principally by: 

1. Noise 
2. Dimensionality of input 

a. Planar laser range finder (2D points) 
b. 3D laser range finder (3D point cloud) 
c. Camera features.. 

3. Frame of reference  
a. Laser/camera in robot frame 
b. GPS in earth coord. Frame 
c. Accellerometer/Gyros in inertial coord. frame 

 
SLAM problem 
 
The approach to solve the SLAM problem is addressed using probabilities. SLAM is 
usually explained by the conditional  probability: 
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(a) Raw vehicle odometry (b) FastSLAM 2.0,M=1 particle (c) Same w. dynamic feature management

Figure 1: FastSLAM 2.0 applied to the Victoria Park benchmark data set using only M=1 particle. The accuracy of the recovered path and
the resulting map is indistinguishable from that the best EKF-style methods and the original FastSLAM algorithm withM=100 particles.

At first glance, one may be tempted to substitute w
[m]
t for

the probability on the right-hand side, as in regular Fast-
SLAM. However, w
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different probability, which is calculated as follows.
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Linearization of g leads to a Gaussian over zt with mean
g(µ[m]

nt,t−1, s
[m]
t ) and covariance Q

[m]
t . Both are functions of

the data association variable nt.

4.5 Feature Management
Finally, in cases with unknown data associations, features
have to created dynamically. As is common for SLAM algo-
rithms [5], our approach creates new features when the mea-
surement probability in (20) is below a threshold. However,
real-world data with frequent outliers will generate spurious
landmarks using this rule. Following [5], our approach re-
moves such spurious landmarks by keeping track of their pos-
terior probability of existence. Our mechanism analyzes mea-
surement to the presence and absence of features. Observing a
landmark provides positive evidence for its existence, whereas
not observing it when µ

[m]
n falls within the robot’s perceptual

range provides negative evidence. The posterior probability
of landmark existence is accumulated by the following Bayes
filter, whose log-odds form is familiar from the literature on
occupancy grid maps [16]:
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(22)

Here τ
[m]
n are the log-odds of the physical existence of land-

mark θ
[m]
n in map m, and p(i[m]

n | s
[m]
t , zt, n̂

[m]
t ) is the prob-

abilistic evidence provided by a measurement. Under appro-
priate definition of the latter, this rule provides for a simple
evidence counting rule. If the log odds drops below a prede-
fined threshold, the corresponding landmark is removed from
the map. This mechanism enables particles to free themselves
of spurious features.

5 Convergence
A key result in this paper is the fact that our new version of
FastSLAM converges for M=1 particle, for a restricted class
of linear Gaussian problems (the same for which KFs con-
verge [5; 18]). Specifically, our result applies to SLAM prob-
lems characterized by the following linear form:

g(st, θnt) = θnt − st (23)
h(ut, st−1) = ut + st−1 (24)

Linear SLAM can be thought of as a robot operating in a Carte-
sian space equipped with a noise-free compass, and sensors
that measure distances to features along the coordinate axes.
The following theorem, whose proof can be found in the ap-
pendix, states the convergence of our new FastSLAM variant:
Theorem. For linear SLAM, FastSLAM with M=1 parti-

cles converges in expectation to the correct map if all features
are observed infi nitely often, and if the location of one feature
is known in advance.
This theorem parallels a similar result previously published

for the Kalman filter [5; 18]. However, this result applies to
the Kalman filter, whose update requires time quadratic in the
number of landmarks N . With M=1, the resampling step
becomes obsolete and each update takes constant time. To
our knowledge, our result is the first convergence result for
a constant-time SLAM algorithm. It even holds if all features
are arranged in a large loop, a situation often thought of as the
worst case for SLAM problems [8].

6 Experimental Results
Systematic experiments showed that FastSLAM 2.0 provides
excellent results with surprisingly few particles, including
M=1. Most of our experiments were carried out using a
benchmark data set collected with an outdoor vehicle in Victo-
ria Park, Sydney [7]. The vehicle path is 3.5km long, and the
map is 320 meters wide. The vehicle is equipped with differ-
ential GPS that is used for evaluation only. Fig. 1a shows the
map of the terrain, along with the path obtained by raw odome-
try (which is very poor, the average RMS error is 93.6 meters).
This data set is presently the most popular benchmark in the
SLAM research community [3].
Figs. 1b&c show the result of applying FastSLAM with

M=1 particle to the data set, without (Fig. 1b) and with

Raw odometry (controls)
True trajectory (GPS)
Inferred trajectory & landmarks



Markov Chains for Web Search: PageRank

Wikipedia



Randomized Algorithm 

https://www.hpcwire.com/

Randomized algorithms 
makes random choices: 

Their run-time, and even 
correctness are random 
variables 

Quicksort Execution:

Expected time to 
quicksort n elements:



From Probability to Statistics
Example

• In probability theory we compute the probability that 20
independent flips of a fair (unbiased) coin give the sequence

HTTHTHTHHTTHTHTHHTTT

• In statistics we ask: given that we observed the sequence

HTTHTHTHHTTHTHTHHTTT

what is the likelihood that the coin was fair (unbiased).

Ø In probability theory we compute the probability that 20 
independent flips of a fair (unbiased) coin give the sequence

Ø In statistics we ask: Given that we observed the sequence

what is the likelihood that the coin is fair (unbiased)?

Example

• In probability theory we compute the probability that 20
independent flips of a fair (unbiased) coin give the sequence

HTTHTHTHHTTHTHTHHTTT

• In statistics we ask: given that we observed the sequence

HTTHTHTHHTTHTHTHHTTT

what is the likelihood that the coin was fair (unbiased). https://hattonsoflondon.co.uk/



From Probability to Statistics
The Frequentist Model: The probability of an outcome in a 
trial is the frequency of that outcome in a long sequence of 
identical and independent such trials (limiting frequency). 
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FIGURE 2. Relative frequencies of heads in two long series of coin tosses. For a small number 
of trials, the relative frequencies fluctuate quite noticeably as the number oi trials varies. But these 
fluctuations tend to decrease as the number of trials increases. Initially, the two sequences of relative 
frequencies look quite different. But after a while, both relative frequencies settle down around 1/2. 
(The two series were obtained using a computer random number generator to simulate coin tosses.) 
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Pitman’s Probability, 1999



From Probability to Statistics
The Frequentist Model: The probability of an outcome in a 
trial is the frequency of that outcome in a long sequence of 
identical and independent such trials (limiting frequency). 

But then what’s the meaning of:
Candidate X has 60% probability of winning the 
election? 
The election happens only once – no frequencies.



From Probability to Statistics

The Bayesian Belief Model: Based on all the information 
we have seen so far, the probability is our best estimate for 
the chance of a particular outcome.

I offer a bet that X wins the election at q to 1 odds:
you lose $1 if you’re wrong, and earn $q if you’re right.
A rational person would take this bet only if they 
believe the odds of winning are at least 1/(1+q).

Probabilities and odds express the same tradeoff.



From Probability to Statistics
The Frequentist Model: The probability of an outcome in a 
trial is the frequency of that outcome in a long sequence of 
identical and independent such trials (limiting frequency). 

The Bayesian Belief Model: Based on all the information 
we have seen so far, the probability is our best estimate 
for the chance of a particular outcome.

   

Classic hypothesis testing; confidence interval, etc.

Machine learning, Bayesian analysis



Hypothesis Testing

Hypothesis Testing - Proportion Example



Bayesian Method: Face Detection
1.2. Supervised learning 7

(a) (b)

Figure 1.6 Example of face detection. (a) Input image (Murphy family, photo taken 5 August 2010 by
Bernard Diedrich of Sherwood Studios). (b) Output of classifier, which detected 5 faces at di�erent poses.
This was produced using the online demo at http://demo.pittpatt.com/. The classifier was trained
on 1000s of manually labeled images of faces and non-faces, and then was applied to a dense set of
overlapping patches in the test image. Only the patches whose probability of containing a face was
su�ciently high were returned. Used with kind permission of Pittpatt.com

verify this in Exercise 1.1.) This flexibility is both a blessing (since the methods are general
purpose) and a curse (since the methods ignore an obviously useful source of information). We
will discuss methods for exploiting structure in the input features later in the book.

Face detection and recognition

A harder problem is to find objects within an image; this is called object detection or object
localization. An important special case of this is face detection. One approach to this problem
is to divide the image into many small overlapping patches at di�erent locations, scales and
orientations, and to classify each such patch based on whether it contains face-like texture or
not. This is called a sliding window detector. The system then returns those locations where
the probability of face is su�ciently high. See Figure 1.6 for an example. Such face detection
systems are built-in to most modern digital cameras; the locations of the detected faces are
used to determine the center of the auto-focus. Another application is automatically blurring
out faces in Google’s StreetView system.
Having found the faces, one can then proceed to perform face recognition, which means

estimating the identity of the person (see Figure 1.10(a)). In this case, the number of class labels
might be very large. Also, the features one should use are likely to be di�erent than in the face
detection problem: for recognition, subtle di�erences between faces such as hairstyle may be
important for determining identity, but for detection, it is important to be invariant to such
details, and to just focus on the di�erences between faces and non-faces. For more information
about visual object detection, see e.g., (Szeliski 2010).

K. Murphy & Family

148 Viola and Jones

5. Results

This section describes the final face detection system.
The discussion includes details on the structure and
training of the cascaded detector as well as results on
a large real-world testing set.

5.1. Training Dataset

The face training set consisted of 4916 hand labeled
faces scaled and aligned to a base resolution of 24 by
24 pixels. The faces were extracted from images down-
loaded during a random crawl of the World Wide Web.
Some typical face examples are shown in Fig. 8. The
training faces are only roughly aligned. This was done
by having a person place a bounding box around each
face just above the eyebrows and about half-way be-
tween the mouth and the chin. This bounding box was
then enlarged by 50% and then cropped and scaled to
24 by 24 pixels. No further alignment was done (i.e.
the eyes are not aligned). Notice that these examples
contain more of the head than the examples used by

Figure 8. Example of frontal upright face images used for training.

Rowley et al. (1998) or Sung and Poggio (1998). Ini-
tial experiments also used 16 by 16 pixel training im-
ages in which the faces were more tightly cropped,
but got slightly worse results. Presumably the 24 by
24 examples include extra visual information such as
the contours of the chin and cheeks and the hair line
which help to improve accuracy. Because of the nature
of the features used, the larger sized sub-windows do
not slow performance. In fact, the additional informa-
tion contained in the larger sub-windows can be used
to reject non-faces earlier in the detection cascade.

5.2. Structure of the Detector Cascade

The final detector is a 38 layer cascade of classifiers
which included a total of 6060 features.

The first classifier in the cascade is constructed us-
ing two features and rejects about 50% of non-faces
while correctly detecting close to 100% of faces. The
next classifier has ten features and rejects 80% of non-
faces while detecting almost 100% of faces. The next
two layers are 25-feature classifiers followed by three
50-feature classifiers followed by classifiers with a

Based on classifiers trained from 
tens of thousands of example faces
(Viola & Jones, 2004)



Digit & Hand Gesture Recognition

Athitsos et al., CVPR 2004 & PAMI 2008 



Summary of Course Topics
I. Probability Models
II. Discrete Random Variables
III. Continuous Random Variables
IV. Normal Distributions
V. Limit Theorems
VI. Markov Chains
VII. Randomized Algorithms
VIII.Monte Carlo Methods
IX. Bayesian Statistical Inference
X. Frequentist Statistical Inference



CS145: Lecture 0 Outline
ØProbability and statistics: key concepts & applications
ØCourse Details: People
ØCourse prerequisites: 

calculus, programming
ØCourse work and evaluation:

homework, midterm exam, final exam
ØWho should take this class?
ØRegistration, administration, tech details



Course Prerequisites

Ø AP Calculus BC exam, or Brown MATH 0100/0170
Ø Topics:  limits, basic derivatives & chain rule, basic integrals & 

fundamental theorem of calculus, sequences & series, …

Calculus
Not formally enforced, but we will assume comfort with:



Course Prerequisites

Ø AP Calculus BC exam, or Brown MATH 0100/0170
Ø Topics:  limits, basic derivatives & chain rule, basic integrals & 

fundamental theorem of calculus, sequences & series, …

Calculus

Ø Any single-semester programming course:  CS4, CS15, CS17, CS19, etc.
Ø Or, other experience that gives comfort with writing simple functions

Programming (optional)

Not formally enforced, but we will assume comfort with:



CS145: Lecture 0 Outline
ØProbability and statistics: key concepts & applications
ØCourse Details: People
ØCourse prerequisites: 

calculus, programming
ØCourse work and evaluation:

homework, midterm exam, final exam
ØWho should take this class?
ØRegistration, administration, tech details



Course Work and Evaluation

Ø Weekly, equally weighted homework assignments
§ Can work in a group but write your own submission.

Ø Probabilistic derivations, calculations, and reasoning (i.e., math)
Ø Usually, some math questions can be substitute by an easy 

implementation assignment.
Ø Submitted electronically, out for one week
Ø Read the syllabus and grading policies document on the website
Ø In class midterm and final

Ø We are very flexible – when warranted

Homework 30%, Midterm 30%, Final 40% of course grade



CS145: Lecture 0 Outline
ØProbability and statistics: key concepts & applications
ØCourse Details: People
ØCourse prerequisites: 

calculus, programming
ØCourse work and evaluation:
ØWhy should take this class?
ØRegistration, administration, tech details



Who Should Take CS 1450?
• CS concentrators can satisfy the CS requirement with 

APMA 1650/1655

• DSI master’s students can satisfy the DSI requirement with 

APMA 1690

• CS 1450 covers probability/statistics as in APMA 1655 

         plus, algorithmic/data science applications.

• If you plan to study machine learning, data science, or 

theory, consider taking CS 1450 (even if it’s harder).



CS145: Lecture 0 Outline
ØProbability and statistics: key concepts & applications
ØCourse Details: People
ØCourse prerequisites

calculus, programming
ØCourse work and evaluation:
ØWhy you shouldn’t take this class
ØRegistration, administration, tech details



Course Textbook

Ø Primary: Bertsekas & Tsitsiklis, Introduction to Probability, 2nd ed. (2008)
Ø Alternative for some topics (no statistics): Pitman, Probability (1999)
Ø Supplemental readings (online) for a few advanced topics  



Course Details
Ø Resources:

§ Course web site: http://cs.brown.edu/courses/csci1450/index.html
• Slides, homework assignments

§ Ed discussion: https://edstem.org

Ø Registration: 
§ Send a request through CAB

http://cs.brown.edu/courses/csci1450/index.html
https://edstem.org/


Questions?


