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We derive the first-, second-, and kth-order statistics for the uniform
distribution on [0, 1]. We use these results to prove that the expected
revenue of the first- and second-price auctions are equal.

1 Order Statistics

Definition 1.1. The kth-order statistic, denoted X(k;n), is the the kth-
largest value among n i.i.d.draws of a random variable X.

In particular, the first-order statistic is the maximum of n draws,
the second-order statistic is the second highest of n draws, and the
nth-order statistic is the minimum of n draws.1 1 It is equally legitimate to define order

statistics in the reverse order, so that
the first-order statistic is the minimum,
instead of the maximum, of n draws.

Order statistics are useful in analyzing the outcomes of first- and
second-price auctions, as these outcomes depend on the highest and
second-highest draws from the distribution of bidders’ values.

Consider a random variable X that is uniform on [0, 1]. If n = 1,
then we expect the value of the first2-order statistic to be the expected 2 and only

value of X itself, namely 1/2. If n = 2, then we would expect the two
order statistics to divide the unit interval into thirds, in which case
the expected value of the first-order statistic is 2/3 and the expected
value of the second-order statistic is 1/3. In general, we would expect
n order statistics to divide the unit interval into n + 1 regions, so
that the expected value of the smallest order statistic is 1/n+1 and the
expected value of the largest, is n/n+1.
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Figure 1: Visualization of the three
order statistics for n = 4.

Remark 1.2. This result scales accordingly if the random variables
are drawn from an arbitrary continuous bounded distribution [a, b],
rather than [0, 1], so that the expected value of the smallest (resp.
largest) order statistic is a + (b − a)1/n+1 (resp. a + (b − a)n/n+1).

In the rest of this section, we formalize this intuition. We simply
write X(k), when n is clear from context. Moreover, we denote the
PDF of X(k) by fX(k)

, and the CDF by FX(k)
.
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1.1 First-Order Statistic

Fix a value of n. We are interested in calculating the expected value
of X(1), the first-order statistic, when sampling i.i.d. from a uniform
distribution, call it U, on [0, 1]. That is,

E
[

X(1)

]
=
∫ 1

0
x fX(1)

(x) dx.

We will proceed by computing the CDF FX(1)
, which is easy to

compute, and then taking derivatives to arrive at the PDF, fX(1)
.3 3 The CDF is defined as follows:

FX(x) =
∫ x

−∞
fX(t) dt.

By the Fundamental Thm of Calculus,

fX(x) =
d

dx
FX(x).

In particular,

fX(1)
(x) =

d
dx

FX(1)
(x).

To derive the CDF, we are interested in the event, X(1) ≤ x. This
event is realized when the highest draw is less than or equal to x, or
equivalently, when all n draws are less than or equal to x: i.e.,

FX(1)
(x) = Pr(X(1) ≤ x)

= Pr(Xj ≤ x, for all j ∈ [n])

= ∏
n

Pr(X ≤ x)

= ∏
n

F(x)

= xn.

Now the PDF of X(1) is given by:

fX(1)
(x) =

d
dx

FX(1)
(x)

=
d

dx
xn

= nxn−1.

Therefore, the expected value of the first-order statistic is:

E
[

X(1)

]
=
∫ 1

0
x fX(1)

(x) dx

=
∫ 1

0
nxn dx

=
n

n + 1
xn+1

∣∣∣∣1
0

=
n

n + 1
.

1.2 Second-Order Statistic

To derive the CDF of the second-order statistic, we are interested in
the event, X(2) ≤ x. This event is realized when the second-highest
draw among n draws is less than or equal to x, which itself can be
realized in two ways: either all n draws are less than or equal to x
(i.e., X(1) ≤ x) or the highest draw exceeds x, but the remaining n − 1
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draws are all less than or equal to x. The former case happens with
probability xn, while the latter can happen in n different ways, each
with probability xn−1(1 − x): i.e.,

Pr(X(2) ≤ x) = Pr(X(1) ≤ x) +
n

∑
i=1

Pr(Xj ≤ x, ∀j ̸= i and Xi > x)

= Pr(X(1) ≤ x) +
n

∑
i=1

Pr(Xj ≤ x, ∀j ̸= i)Pr(Xi > x)

= xn + nxn−1(1 − x).

Now the PDF of X(2) is given by:

fX(2)
(x) =

d
dx

FX(2)
(x)

=
d

dx
xn + nxn−1(1 − x)

= nxn−1 + n(n − 1)xn−2(1 − x)− nxn−1

= n(n − 1)xn−2(1 − x).

Therefore, the expected value of the second-order statistic is:

E
[

X(2)

]
=
∫ 1

0
x fX(2)

(x)dx

= n(n − 1)
∫ 1

0

(
xn−1 − xn

)
dx

= n(n − 1)
(

1
n
− 1

n + 1

)
= n(n − 1)

1
n(n + 1)

=
n − 1
n + 1

.

2 Revenue Equivalence

Theorem 2.1. If bidder’s values are uniform i.i.d., then the expected rev-
enue of the first-price auction is equal to that of the second-price auction,
assuming bidders behave according to their respective equilibrium strategies.

Proof. The support of the uniform distribution does not matter; we
choose [0, 1] for convenience. Let Rev1 and Rev2 denote the expected
revenue of the first- and second-price auctions, respectively.

In a second-price auction, the bidder with the highest value wins,
paying the second-highest bid, which, because the auction is truthful,
is in fact the second-highest value. Therefore, the expected revenue
is equal to the expected second-highest value, which is precisely the
expected value of the second-order statistic: i.e.,

Rev2 =
n − 1
n + 1

.
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In a first-price auction, the winner is the bidder with the highest
value, and she pays her bid. Therefore, the expected revenue is the
expected value of the highest bid. What is this expected value?

Recall our assumption that the bidders’ values are uniformly dis-
tributed in the range [0, 1]. Since the first-price equilibrium bid is
(n−1/n) v, assuming value v, it follows that these bids are distributed
in the range [0, n−1/n]. Moreover, since the equilibrium bid function
is weakly increasing in value, and the bids are the values times a
constant scale factor, the bids are likewise uniformly distributed.

The expected revenue is therefore the expected value of the first-
order statistic (i.e., the highest bid), assuming n draws from a uni-
form distribution on [0, n−1/n]: i.e., the first-order statistic on the
uniform [0, 1] distribution scaled by n−1/n:

Rev1 =

(
n

n + 1

)(
n − 1

n

)
=

n − 1
n + 1

Therefore, Rev1 = Rev2.

Remark 2.2. This revenue equivalence result holds for any standard
auction, meaning any auction that allocates to a highest bidder, so
that equilibrium bids are weakly increasing in value, assuming 1. bid-
ders’ values drawn from a continuous, bounded distribution (e.g.,
uniform on [a, b], for some a, b ∈ R), and 2. the lowest-type bidder
pays some constant value (usually 0) at equilibrium. Any auction that
charges any arbitrary combination of the bids is a standard auction,
even with arbitrary additive fees (e.g., the winner pays the average of
the first- and second-highest prices plus $10).

A kth-Order Statistic

Beta Function The Beta function B(x, y) is by the following integral:

B(x, y) =
∫ 1

0
tx−1(1 − t)y−1dy.

When x and y are positive integers, this function simplifies as:

B(x, y) =
(x − 1)!(y − 1)!
(x + y − 1)!

.

We will use the Beta function in (the very last step of) our derivation
of the expected value of the kth-order statistic.

To start, let’s compute the probability the kth-order statistic lies in
some small interval [x, x + ∆x] ⊂ [0, 1]. When the draws are i.i.d.,

Pr(X(k) ∈ [x, x+∆x]) = n
(

n − 1
k − 1

)
Pr(X < x)n−k Pr(X ∈ [x, x+∆x]) Pr(X > x+∆x)k−1 +O(∆x2).

The middle three probabilities are, respectively, the chance of:
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• exactly n − k values less than x,

• exactly one value between x and x + ∆x, and

• exactly k − 1 values greater than x + ∆x.

This gives the probability of one specific arrangement of this form,
so we multiply by the number of possible arrangements. There are n
possible agents who could have a value between x and x + ∆, after
which there are (n−1

k−1) possible groups of agents who could have
values greater than x, after which the remaining n − k agents are
fixed. N.B. There is also a chance that multiple values fall between
x and x + ∆x. As each such probability will contain a ∆xi term with
i ≥ 2, we include the term O(∆x2).

The assumption that X is uniformly distributed on [0, 1] yields the
following further simplification:

Pr(X(k) ∈ [x, x + ∆x]) = n
(

n − 1
k − 1

)
xn−k ∆x (1− x − ∆x)k−1 +O(∆x2).

Letting xi+1 = xi + ∆x, we can express the expectation of interest
in discretized space as follows:

m

∑
i=1

xi Pr(X(k) ∈ [xi, xi+1]).

To calculate the corresponding continuous expectation, we take the
limit as m → ∞, so that the ∆x terms become arbitrarily small:

E
[

X(k)

]
= lim

m→∞

m

∑
i=1

xi Pr(X(k) ∈ [xi, xi + ∆x])

= n
(

n − 1
k − 1

)(
lim

m→∞

m

∑
i=1

xn−k+1
i ∆x (1 − xi − ∆x)k−1 + O(∆x2)

)

= n
(

n − 1
k − 1

) ∫ 1

0
xn−k+1(1 − x)k−1dx

= n
(

n − 1
k − 1

)
B(n − k + 2, k)

=

(
n!

(k − 1)!(n − k)!

)(
(n − k + 1)!(k − 1)!

(n + 1)!

)
=

n − (k − 1)
n + 1

.
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