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We prove the celebrated envelope theorem. Then, by way of this theorem,
we derive the symmetric equilibrium in first-price auctions and Myerson’s
payment characterization for DSIC auctions. When originally drafted, these
notes followed the presentation in Quint;1 by now, there are likely deviations. 1 Dan Quint. Some beautiful theorems with

beautiful proofs. University of Wisconsin–
Madison, 2014

1 Envelope Theorem

Consider the following parameterized optimization problem:

V(θ) = max
a∈A

f (a; θ)

We write f (·; θ) to indicate that f is “parameterized" by some θ ∈ Θ.2 Via 2 Such parameterizations are also some-
times denoted with subscripts instead of
semicolons: i.e., fθ(·).

this parameterization, this seeming optimization over the set A is in fact an
optimization over a strategy space of functions s : Θ → A.

f (a3; θ)
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Figure 1: An illustration of an upper
envelope (in red).

We prove the simplest version of the envelope theorem, where only the
so-called value function V depends on the parameter θ; the constraint (or
choice) set A does not.

Theorem 1.1. Assume A∗(θ) is nonempty for all θ ∈ Θ, with s∗(θ) an
element of A∗(θ), so that V(θ) = f (s∗(θ); θ). If f is continuously differ-
entiable with respect to both a (the decision variable) and θ (the parameter),
and s∗(θ) is continuously differentiable with respect to θ,3 then 3 This assumption can be dropped. Indeed,

the upper envelope in the example plotted in
Figure 1 is not smooth; it has sharp corners.
Thus, the assumption does not hold.
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V′(θ) =
dV(θ)

dθ
=

d maxa∈A f (a; θ)

dθ
=

∂ f (s∗(θ); θ)

∂θ

The envelope theorem isolates the effect of changes in the parameter θ

on V as dependent only on the direct effect of changes in the parameter θ on
f , regardless of the indirect effect of such changes on the optimizer s∗(θ).
In particular, while the chain rule would suggest that we need to consider
this indirect effect, the key takeaway of the envelope theorem is that we do
not! Not only does the envelope theorem preclude the need for unnecessary
computations, it skirts the potential difficulty of optimizing s∗(θ) when it is
not differentiable, as in Figure 1.

Proof Sketch. Recall the chain rule from multivariable calculus: If z(t) =

f (x, y), where x = x(t) and y = y(t), and everything is continuously
differentiable (i.e., x and y with respect to t, and f with respect to x and y),
then

dz
dt

=
∂ f
∂x

dx
dt

+
∂ f
∂y

dy
dt

N.B. The notation dx/dt is a total derivative; it describes how the function
x varies with respect to all its variables, in this case, t. The notation ∂ f/∂x, in
contrast, is a partial derivative; it describes how the function f varies with
respect to the variable x only, holding all other variables constant.

By assumption, the function f is continuously differentiable with respect
to both a and θ, and s∗(θ) is continuously differentiable with respect to θ.
Therefore, we can apply the chain rule to the parameterized value function
V(θ) = f (s∗(θ); θ), which yields:

dV
dθ

=
∂ f (s∗(θ); θ)

∂a
ds∗(θ)

dθ
+

∂ f (s∗(θ); θ)

∂θ

The first summand in this expression can be understood as follows:

∂ f (s∗(θ); θ)

∂a
=

∂ f (a; θ)

∂a

∣∣∣
a=s∗(θ)

But the partial derivative of f with respect to a evaluated at an optimum,
namely s∗(θ), is necessarily 0, by the first-order optimality conditions.
Hence, only the third term survives:

dV
dθ

=
∂ f (s∗(θ); θ)

∂θ
=

∂ f (a; θ)

∂θ

∣∣∣
a=s∗(θ)

Example 1.2. The following functions are shown in Figure 1:

f (a1; θ) = 1

f (a2; θ) = 1/4 θ + 3/2

f (a3; θ) = θ + 1
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Next observe the following:

s∗(θ) =


a1 if θ < −2

a2 if −2 < θ < 2/3

a3 if θ > 2/3

Thus,

V(θ) = f (s∗(θ); θ) =


f (a1; θ) if θ < −2

f (a2; θ) if −2 < θ < 2/3

f (a3; θ) if θ > 2/3

Therefore, by the envelope theorem:

V′(θ) =


0 if θ < −2

1/4 if −2 < θ < 2/3

1 if θ > 2/3

In particular, the derivative of the value function with respect to θ can be
computed without differentiating through the optimizer s∗(θ).

2 Key Observation

Recall that an auction is defined by two rules, an allocation rule and a
payment rule. We consider a single-parameter auction for one good in which
each bidder’s i’s valuation/value for the good is described by one number,
vi ∈ Ti, based on which she chooses her bid bi ∈ Bi.

Fixing all other agents’ strategies s−i : T−i → B−i, we abbreviate bidder
i’s payment when she bids bi by pi(bi)

.
= pi(bi, s−i(·)). Her quasilinear

utility if she is allocated the good is then vi − pi(bi). Furthermore, since her
allocation probability is xi(bi), her expected utility is xi(bi)(vi − pi(bi)).

In this setting, the envelope theorem yields an interesting insight about the
optimal expected utility function, namely that its derivative is the (expected)
allocation function.

Theorem 2.1. Given a bidder i with value vi and quasilinear utility function
ui(bi) = xi(bi)(vi − pi(bi)), so that her optimal utility function is given by

U(vi) = max
bi∈Bi

xi(bi)(vi − pi(bi)) .

The derivative of her optimal utility function with respect to her value is her
allocation function: i.e.,

dU(vi)

dvi
= xi(b∗i ) ,

where b∗i = s∗i (vi) denotes a utility-maximizing bid.
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Proof. Let f (bi; vi) = xi(bi)(vi − pi(bi)), and observe the following:

∂ f (bi; vi)

∂vi
=

∂xi(bi)(vi − pi(bi))

∂vi
= xi(bi)

Therefore, by the envelope theorem,

dU(vi)

dvi
=

∂ f (s∗i (vi); vi)

∂vi
=

∂ f (bi; vi)

∂vi

∣∣∣
bi=s∗i (vi)

= xi(bi)
∣∣∣
bi=s∗i (vi)

= xi(b∗i )

3 Equilibrium Derivations via the Envelope Theorem

Next, let’s use the envelope theorem to analyze a symmetric first-price
auction, meaning one in which the bidders’ values are drawn i.i.d. from a
bounded distribution F on [v , v ], for some v ≤ v ∈ R.

Assume a symmetric equilibrium s∗(v) that is non-decreasing in v, so that
a bidder with the highest value wins. At such an equilibrium, if the allocation
probability is x(v) and the winner pays her bid s∗(v), each bidder’s expected
utility at equilibrium is given by U∗(v) = x(v)(v − s∗(v)). The probability
that a bidder i with value v wins is the probability that v ≥ vj, for all j ̸= i:
i.e., Fn−1(v). Each bidder’s expected utility at equilibrium is thus:

U∗(v) = Fn−1(v)(v − s∗(v)) . (1)

By Theorem 2.1, dU∗(v)/dv = x(s∗(v)). Moreover, by the monotonicity
assumption (i.e., s∗(v) is non-decreasing in v), x(s∗(v)) = Fn−1(v).
Therefore, by the fundamental theorem of calculus,

U∗(v) =
∫ v

v
Fn−1(t)dt , (2)

as U∗(v ) = 0. Setting these two expressions for U∗(v) (Equations 1 and 2)
equal to one another yields

Fn−1(v)(v − s∗(v)) =
∫ v

v
Fn−1(t)dt , (3)

from which it follows that

s∗(v) = v −
∫ v

v Fn−1(t)dt

Fn−1(v)
. (4)

Finally, since4 4 See Math’l Aside at the start of Lecture 5
on Myerson’s optimal auction design.

vFn−1(v)−
∫ v

v
Fn−1(t)dt =

∫ v

v
t dFn−1 , (5)

it follows that

s∗(v) =

∫ v
v t dFn−1

Fn−1(v)
. (6)

https://cs.brown.edu/courses/csci1440/lectures/2023/myerson_revenue.pdf
https://cs.brown.edu/courses/csci1440/lectures/2023/myerson_revenue.pdf
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In other words, at equilibrium in a symmetric first-price auction, bidders
shade their bids in such a way that the result is the expected bid of the bidder
with the second-highest value, conditioned on their value being highest.

Remark 3.1. This derivation establishes necessary conditions for s∗ to be a
symmetric equilibrium of a symmetric first-price auction: i.e., if s∗ is such
an equilibrium, then it must take the form of Equation 4 (or equivalently,
Equation 6).

Last week, we proved this same result in the special case of F = U[0, 1].
We can easily recover last week’s result from this week’s as follows. First,
since v = 0 and Fn−1(t) = tn−1,∫ v

0
Fn−1(t)dt =

∫ v

0
tn−1dt =

1
n

tn
∣∣∣v
0
=

vn

n
.

Second, plugging this calculation into Equation 4, and again using the fact
that Fn−1(v) = vn−1, yields:

s∗(v) = v − vn

nvn−1 = v − v
n
= v

(
1 − 1

n

)
=

(
n − 1

n

)
v .

4 Myerson’s Payment Formula via the Envelope Theorem

Finally, again using the envelope theorem, we prove (one direction of)
Myerson’s payment characterization theorem—that the DSIC assumption
implies Myerson’s payment formula.

Proof. Reverting back to our original notation, we denote bidder i’s optimal
utility (or value function) by Vi. By Theorem 2.1, V′

i (vi) = xi(s∗i (vi)).
Moreover, by the DSIC assumption, bidder i’s expected utility is maximized
at vi: i.e., s∗i (vi) = vi. Therefore, V′

i (vi) = xi(vi).
More specifically, V′

i (vi, v−i) = xi(vi, v−i). But then, by ?? (which
invokes the fundamental theorem of calculus),

Vi(vi, v−i)− Vi(v i, v−i) =
∫ vi

v i

V′
i (z, v−i)dz =

∫ vi

v i

xi(z, v−i)dz .

Next, letting pi(vi, v−i) denote bidder i’s expected payment, we can also
express bidder i’s expected utility Vi(vi, v−i) as vixi(vi, v−i)− pi(vi, v−i).

It now follows that

vixi(vi, v−i)− pi(vi, v−i)−
(
v ixi(v i, v−i)− pi(v i, v−i)

)
=

∫ vi

v i

xi(z, v−i)dz .

In other words,

pi(vi, v−i) = vixi(vi, v−i)−
∫ vi

v i

xi(vi, v−i)dz + pi(v i, v−i)− v ixi(v i, v−i) .



THE ENVELOPE THEOREM 6

−2 −1.5 −1 −0.5 0.5 1 1.5 2

−3

−2

−1

1

2

3

y

V(x)

Slices of f (y; x) = xy − y2 for x ∈ {−2, 0, 2}

f (y;−2) f (y; 0) f (y; 2)

Figure 2: Another example of the envelope
theorem.

A Another Example of the Envelope Theorem

First off, let’s calculate y∗(x), because when we use envelope theorem,
we assume this value is known a priori. Holding x constant, we compute the
partial derivative of f (y; x) with respect to y and set it equal to zero:

∂(xy − y2)

∂y
= x − 2y = 0 ,

so that y∗(x) = 1
2 x.

Now, let’s proceed to calculate the derivative of the value function with
respect to the parameter the long way, using the chain rule:

dV(x)
dx

=
∂ f (y∗(x); x)

∂y
dy∗(x)

dx
+

∂ f (y∗(x); x)
∂x

There are three terms to compute:

1.
∂ f (y; x)

∂y
=

∂(xy − y2)

∂y
= x − 2y

Therefore,

∂ f (y; x)
∂x

∣∣∣
y=y∗(x)

= x − 2y∗(x) = x − 2
(

1
2

x
)
= x − x = 0

N.B. This conclusion follows from the first-order optimality conditions,
which is precisely the insight that gives rise to the envelope theorem!
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2.
dy∗(x)

dx
=

d 1
2 (x)
dx

=
1
2

3.
∂ f (y; x)

∂x
=

d(xy − y2)

∂x
= y

Therefore,
∂ f (y; x)

∂x

∣∣∣
y=y∗(x)

= y∗(x) =
1
2

x

Putting it all together:

dV(x)
dx

= 0
(

1
2

)
+

1
2

x =
1
2

x

The envelope theorem uses the fact that the first term in this computation
is necessarily 0 to conclude:

dV(x)
dx

=
∂ f (y∗(x); x)

∂x
=

∂ f (y(x); x)
∂x

∣∣∣
y=y∗(x)

In other words, the envelope theorem renders it unnecessary to carry out steps
1 and 2 in this derivation. Step 3 alone suffices!

References

[1] Dan Quint. Some beautiful theorems with beautiful proofs. University of
Wisconsin–Madison, 2014.


	Envelope Theorem
	Key Observation
	Equilibrium Derivations via the Envelope Theorem
	Myerson's Payment Formula via the Envelope Theorem
	Another Example of the Envelope Theorem

