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First, we introduce the mechanism design formalism, assuming a
Bayesian game setting. Then, we introduce the notion of an indirect
mechanism, presenting English, Japanese, and Dutch auctions as exam-
ples. Finally, we cover the Revelation Principle,1 which can transform 1 Roger B Myerson. Optimal auction

design. Mathematics of operations
research, 6(1):58–73, 1981; and Roger B
Myerson. Incentive compatibility and
the bargaining problem. Econometrica:
journal of the Econometric Society, pages
61–73, 1979

any mechanism into a direct incentive compatible one, thereby convert-
ing a game-theoretic problem into a decision-theoretic one.

1 Mechanism Design Framework

Mechanism design has been referred to as the engineering branch
of game theory. It is concerned with designing mechanisms (i.e.,
games) such that the outcomes that arise when the games are played
by rational agents (i.e., the equilibria) achieve some desiderata.

The mechanism design framework thus consists of three parts: the
mechanism formalism, which builds on Bayesian games; solution
concepts, or equilibria, which serve to predict the outcome of the
mechanism/game; and desiderata, or objectives.

Mechanisms The mechanism design paradigm transpires as follows:
A designer selects a mechanism, meaning the rules of the game.
After observing the mechanism/game, the participants make their
decisions. The rules of the game then determine the outcome that
is realized, as a function of the participants’ choices. Furthermore,
ensuing utilities depend on this outcome—in general, for both the
mechanism designer and the participants.

This interaction between a mechanism designer and participants
can be modeled as a multi-stage game. We restrict our present atten-
tion to two stages: the mechanism announces the game rules in the
first stage, and then the participants play a simultaneous-move (i.e.,
one-shot) Bayesian game in the second stage.2 2 Such games are an instance of single-

leader multiple-follower Stackelberg
games.

Heinrich von Stackelberg. Marktform
und gleichgewicht. Julius Springer, 1934

Recall that a Bayesian (i.e., incomplete information) game is given
by B .

= ⟨[n], {Ti}i∈n, {Ai}i∈n, {ui}i∈n, F⟩. As usual, [n] = {1, . . . , n} is
the set of players, and we write T = ∏n

i=1 Ti and A = ∏n
i=1 Ai to de-

note the denote the joint type and action spaces, respectively. Before
play commences, each player is informed of her type (private infor-
mation), sometimes called a signal, drawn from her set of available
types Ti. Conditioned on this private information, she invokes a strat-
egy, si : Ti → Ai. Player i’s utility ui : A × T → R depends on both
the players’ collective actions and (in general) all players’ types. The
joint distribution F over all players’ types is assumed to be common
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knowledge, known to both the players and, in a mechanism design
setting, the mechanism designer as well.

A mechanism M .
= ⟨B, Ω, g⟩ builds on this definition with an

outcome space, denoted Ω, and an outcome function g : A → Ω,
which maps the players’ collective actions to an outcome. That is,
g(s(t)) is the outcome when player i of type ti plays strategy si and
the remaining players of type t−i play strategy s−i.3 Player i’s utility 3 For example, the outcome function

of an auction maps a profile of bids to
an outcome, which is described by an
allocation and a payment rule.

ui : Ω × T → R in a mechanism thus depends on the outcome
and, as usual, (in general) all players’ types. Finally, the actions in
a mechanism are called reports, or messages, as they are indeed
messages, sent from the players to the mechanism designer, who is
often called the center.

Equilibria As mechanisms encode an incomplete-information games,
solutions typically take the form of joint strategy profiles s∗ that the
players are predicted to play. Dominant-strategy or ex-post Nash
equilibria when they exist, and otherwise Bayes-Nash equilibria, are
applied to make these predictions.

Desiderata There are two prevalent approaches to problems in mech-
anism design, one set-valued, and one numeric-valued.

First, it may be the designer’s goal to implement a social choice
correspondence f : T ⇒ Ω, so that the equilibria of the mechanism
coincide with the social choices. Implementation can be strong or
weak, depending on whether all or some equilibria coincide with the
social choices. At one end of the spectrum, a design may deemed
successful if g(s∗(t)) = f (t), for all type profiles t and all equilibria
s∗(t).4 Alternatively, a design may deemed successful if for all type 4 Abusing notation, here g(s∗(t))

denotes the set of all outcomes corre-
sponding to any equilibrium s∗(t).

profiles t, there exists an equilibrium s∗(t) s.t. g(s∗(t)) ∈ f (t).
Alternatively, the designer may formulate her goals in terms of a

numeric function of a solution to the induced game that it seeks to
maximize,5 such as expected welfare Et∼F [W(g(s∗(t))], or expected 5 Implicit in this goal is an equilibrium

selection problem that cannot be over-
looked; in case the predicted solution
is not unique, welfare/revenue could,
for example, be computed in either the
worst or the average case.

revenue Et∼F [R(g(s∗(t))].6

6 Note that within the MD framework
these goals could easily be relaxed so
that, for example, welfare/revenue
exceeds some threshold value (or is
maximized) with high probability.

In much of the mechanism design literature, the problem is greatly
simplified by reliance on the revelation principle, which argues that
the strategic outcome of any mechanism can be replicated by a direct
mechanism (i.e., a mechanism in which agents simply report types).

2 Direct vs. Indirect Mechanisms

Direct mechanisms are potentially much simpler for participants
than indirect mechanisms, as they simply seek to elicit their private
information, rather than some function of that information.
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Definition 2.1. A direct mechanism is one in which the space of
possible reports is equal to the space of possible types. All other
mechanisms are called indirect.

First-, second-, third, etc.-price and all-pay auctions are all ex-
amples of direct mechanisms, when the space of possible bids is
restricted to the space of possible types, a natural assumption. Exam-
ples of indirect mechanisms include the English and Japanese, both
ascending, auctions; and the Dutch, a descending, auction.

Example 2.2. The Japanese auction consists of a number of rounds.
On round k = 1, 2, . . ., the auctioneer offers the good at price p = kϵ,
for some small ϵ > 0, asking all bidders if they are interested in the
good at that price. The auction continues so long as more than one
bidder is interested. The auction terminates, say at round t, when one
or fewer bidders remain interested. If there is one interested bidder
at round t, then she wins, paying tϵ; if there are no interested bidders
then a winner is selected at random from the set of interested bidders
during round t − 1. This winner pays (t − 1)ϵ.

In this auction, actions consist of t binary answers to queries
“Would you like the good at price p?”. In practice, it may be eas-
ier for bidders to answer queries like this one, rather than articulate
an exact value for a good, as is required in a sealed-bid auction. En-
glish auctions, perhaps the most widely used ascending auctions,7 7 This is not to say that second-price

(i.e., Vickrey) auctions are not used
in practice. On the contrary, stamp
auctioneers used this mechanism to
sell stamps by mail as early as the late
1800s, before Vickrey was born!

offer a compromise between Japanese ascending auctions and sealed-
bid second-price. In English auctions, bidders respond to the query
“Name a price higher than p at which you would like the good.”

Example 2.3. The Dutch auction also consists of a number of rounds,
but in this case, the price p is initialized high enough so that no bid-
ders are interested. The price is then decremented successively by
ϵ—at a known clock speed—until a bidder (or a set of bidders) de-
clares interest in the good. That bidder is then declared the winner;8 8 (or a tie is broken randomly)

the winner receives the good and pays the final price.

Not surprisingly, Dutch auctions are popular in the Netherlands,
where they are used to sell flowers—perishable goods—where the
clock speed dictates a worst-case end time for an auction.

3 Incentive Compatibility

It would be difficult for a mechanism that operates under misleading
or incorrect information to achieve its desiderata. So for a direct
mechanism to be successful, it should incentivize its participants to
report their private information truthfully. In other words, we are
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specifically interested in designing direct mechanisms for which
truthtelling behavior is an equilibrium. When this condition holds of
a direct mechanism, it is called incentive compatible.

Definition 3.1. In a direct mechanism, reporting (i.e., “playing”)
one’s true type is called truthtelling: i.e., si(ti) = ti, for all i ∈ [n].

Just as there are various notions of equilibrium in Bayesian games
(BNE, EPNE, and DSE), there are corresponding notions of incentive
compatibility (BIC, EPIC, and DSIC).

In the following definitions, we denote truthtelling by s∗, and true
types by t∗: i.e., s∗(t∗) = t∗. Moreover, because strategies map from
types to types in direct mechanisms, quantifying over all other-agent
strategies s−i(t−i) is equivalent to quantifying over all types t−i.

Definition 3.2. A (direct) mechanism is said to be Bayesian incentive
compatible (BIC) iff truthtelling is a BNE: i.e., s∗ is s.t.

E
t−i∼Ft−i |ti

[
ui(g(s∗i (ti), s∗−i(t−i)); t)

]
≥ E

t−i∼Ft−i |ti

[
ui(g(t′i, s∗−i(t−i)); t)

]
, ∀i ∈ [n], ∀ti, t′i ∈ Ti.

Equivalently, t∗ is s.t.

E
t−i∼Ft−i |t∗i

[
ui(g(t∗i , t∗−i); t)

]
≥ E

t−i∼Ft−i |t∗i

[
ui(g(t′i, t∗−i); t)

]
, ∀i ∈ [n], ∀t′i ∈ Ti.

Definition 3.3. A (direct) mechanism is ex-post Nash incentive
compatible (EPIC) iff truthtelling is an EPNE: i.e., s∗ = (s∗i , s∗−i) is s.t.

ui(g(s∗i (ti), s∗−i(t−i)); t) ≥ ui(g(t′i, s∗−i(t−i)); t), ∀i ∈ [n], ∀ti, t′i ∈ Ti, ∀t−i ∈ T−i.

Equivalently, t∗ is s.t.

ui(g(t∗i , t∗−i); t) ≥ ui(g(t′i, t∗−i); t), ∀i ∈ [n], ∀t′i ∈ Ti.

Definition 3.4. A (direct) mechanism is dominant strategy incen-
tive compatible (DSIC) iff truthtelling is a DSE: i.e., s∗ comprises n
strategies s∗i , one per player i, s.t.

ui(g(s∗i (ti), s−i(t−i)); t) ≥ ui(g(t′i, s−i(t−i)); t), ∀i ∈ [n], ∀ti, t′i ∈ Ti, ∀s−i ∈ S−i, ∀t−i ∈ T−i.

Equivalently, t∗ is s.t.

ui(g(t∗i , t−i); t) ≥ ui(g(t′i, t−i); t), ∀i ∈ [n], ∀ti, t′i ∈ Ti, ∀t−i ∈ T−i.

As it turns out, the EPIC and DSIC equilibrium concepts coincide
in direct mechanisms. A proof of the following proposition can be
found in the appendix.

Proposition 3.5. Truthtelling in a direct mechanism is a dominant strategy
equilibrium (DSE) iff it is an ex-post Nash equilibrium (EPNE).

This equivalence does not carry over to indirect mechanisms,
however, where the DSIC property will prove too strong to hope for,
leaving us to settle for EPIC mechanisms.9 9 Haha! Imagine having to settle for an

EPIC mechanism!
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4 The Revelation Principle

In our search for mechanisms that satisfy certain desiderata, the
revelation principle allows us to restrict our attention to direct mech-
anisms for which truthtelling is an equilibrium. The principle follows
via construction: we construct a direct mechanism in which “the
agents don’t have to lie, [because] the mechanism lies for them.”

Theorem 4.1 (Revelation Principle). If a (possibly indirect) mechanism
M implements a social choice function10 f in dominant strategies (resp. 10 A social choice function f : T → Ω

assigns unique outcomes to types.via a Bayes-Nash equilibrium), then there exists a DSIC (resp. BIC) direct
mechanism that likewise implements f .

Proof. Given a (possibly indirect) mechanism M that implements the
social choice function f at equilibrium s, we construct a truthful (i.e.,
incentive compatible) direct mechanism M∗ as follows:

• Elicit types t1, t2, . . . , tn from all the agents.

• Simulate M by performing i’s equilibrium action si(ti) on her
behalf, given her reported type ti.

• Return the outcome produced by M, namely g(s(t)) (which, by
assumption, equals f (t)).

Figure 1: The Revelation Principle

We can think of the construction (see Figure 1) as a machine that
first asks all agents for their types, and then runs the equilibrium
strategy on their behalf. Each agent reports a (possibly false) type ti

to the direct mechanism M∗, which simulates si(ti). If agent i lies
to the machine (and if she is the only one lying), the machine will
run everyone else’s equilibrium strategy based on their true types,
except for agent i’s. The outcome will be exactly the same outcome
as running M, assuming i deviates from its equilibrium strategy.
But this deviation was not in i’s best interest in M, so likewise, it is
not in i’s best interest in M∗. Therefore, M∗ is truthtelling (i.e.: the
agents are incentivized to report their true types).



mechanism design and the revelation principle 6

By construction, the direct mechanism M∗ implements the social
choice function f . Further, it is DSIC, if s is a dominant-strategy
equilibrium, and BIC, otherwise.

Example 4.2. Consider a modified second-price auction M in which
the winner is the highest bidder, and she pays twice the second-
highest bidder’s bid. This auction has a DSE in which the bidders
bid half their values. (Why?)

Given M and the aforementioned DSE, the mechanism M∗ con-
structed according to the revelation principle, works as follows:

• Elicit all bidders’ values v1, v2, . . . , vn.

• For each bidder i, submit the sealed bid vi/2.

• Return the outcome produced by original auction M, namely the
highest bidder wins and pays twice the second-highest bid.

The mechanism M∗ has the following three properties:

1. DSIC: Truthtelling is a dominant-strategy equilibrium.

2. The highest bidder in M∗ (who by 1, has the highest value) wins.

3. This winner pays twice the second-highest bid in M, which by 1,
is twice half of the second-highest value, i.e., the second-highest
value, while no other bidders make any payments.

Therefore, M∗ is the second-price auction! Indeed, there are no DSIC
auctions for this setting other than the second-price auction.11 11 modulo possible additive offsets to

the payment rule to satisfy individual
rationality: i.e., to ensure ui(ω, ti) ≥ 0,
for all players i ∈ [n], outcomes ω ∈ Ω ,
and types ti ∈ Ti

By contraposition, the revelation principle states: if a social choice
function cannot be implemented by a DSIC (resp. BIC) direct mech-
anism, then it cannot be implemented in dominant strategies (resp.
via a Bayes-Nash equilibrium) by any (even indirect) mechanism. It
is thus useful as a theoretical tool, because it allows us to explore
the limits of possibility in our search over mechanisms, by ruling out
as potential candidates all indirect mechanisms,12 like the English, 12 We will nonetheless return to the

study of indirect mechanisms later on
in the course.

Japanese, and Dutch auctions, as well as direct mechanisms, like the
first-price auction,13 where truthtelling is not an equilibrium. 13 Ad auctions, which were based on a

second-price model for a decade or so,
recently migrated to a first-price model.
In other words, first-price auctions
remain highly relevant in practice.

A DSIC and EPIC Coincide in Direct Mechanisms

Remark A.1. In a direct mechanism, EPIC is equivalent to DSIC.

Proof. DSIC implies EPIC, so it suffices to show that EPIC also im-
plies DSIC. Let M be an EPIC, direct mechanism in which the space
of possible actions equals the space of possible types.
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Since M is EPIC, for all bidders i ∈ [n] and for all (true) type
profiles t ∈ T, truthful bidding satisfies

ui(g(ti, t−i); t) ≥ ui(g(t′i, t−i); t), ∀t′i ∈ Ti.

Our goal is to show that M is also DSIC: i.e., for all bidders i ∈ [n]
and for all (true) type profiles t ∈ T,

ui(g(ti, b−i); t) ≥ ui(g(t′i, b−i); t), ∀t′i ∈ Ti, ∀b−i ∈ B−i.

By assumption the mechanism is direct: i.e., Bi = Ti for all bidders
i ∈ [n]. It thus suffices to show: for all bidders i ∈ [n] and for all
(true) types ti ∈ Ti,

ui(g(ti, t−i); t) ≥ ui(g(t′i, t−i); t), ∀t′i ∈ Ti, ∀t−i ∈ T−i.

Fix a bidder i with true type ti. EPIC implies that truthful bidding
is a best response for bidder i, assuming the others are also bidding
truthfully. In particular, when the other players’ true type profile is
t′−i ∈ T−i, it holds that:

ui(g(ti, t′−i); t) ≥ ui(g(t′i, t′−i); t), ∀t′i ∈ Ti.

Similarly, when the other players’ true type profile is t′′−i ∈ T−i, it
holds that:

ui(g(ti, t′′−i); t) ≥ ui(g(t′i, t′′−i); t), ∀t′i ∈ Ti.

In other words, truthful bidding is a best response for bidder i regard-
less of the other bidders’ type profiles. That is, truthful bidding is optimal
for bidder i, for all other-agent type profiles: i.e.,

ui(g(ti, t−i); t) ≥ ui(g(t′i, t−i); t), ∀t′i ∈ Ti, ∀t−i ∈ T−i.

Since bidder i was arbitrary, truthful bidding is a dominant-strategy
equilibrium (i.e., it is optimal for all bidders i ∈ [n]).
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