
Normal-Form Games
CSCI 1440/2440

2025-01-22

We describe (complete-information) normal-form games (formally; no
examples), and corresponding equilibrium concepts.

1 Introduction

Decision theory is a theory about how individuals—often called
agents—make decisions. It relies on an underlying model of an
agent’s knowledge and beliefs about the world, including its avail-
able actions, and its preferences over the consequences of its actions.
Von Neumann and Morgenstern’s classic expected utility theory1 1 J. Von Neumann and O. Morgenstern.

Theory of Games and Economic Behavior.
Princeton University Press, 1947

argues that certain (reasonable: e.g., non-contradictory) preferences
can be represented as utility functions, so that decision makers can
be viewed as “expected2 utility maximizers.” This point of view is 2 This expectation can be with respect to

randomness in the agents’ strategies, or
uncertain beliefs about the world.

taken in this class, where utilities are associated with agents’ actions,
and more utility is preferred to less.

2 A Model of Interaction

Game theory might better be named “multiagent decision the-
ory.” A game is a setting in which a set of players3 interact, after 3 We tend to use the terms players and

agents interchangeably.which they receive some utility. In a normal-form game (NFG),
each player i ∈ [n] selects an action ai from a discrete set of ac-
tions Ai.4 Together, these actions form an action profile (i.e., a vector) 4 In this lecture, we assume finite

games, meaning finitely many players
and actions.

a = (a1, . . . , an), which is an element of the space of all possible ac-
tion profiles A = ∏i∈[n] Ai. Finally, each player i ∈ [n] is endowed
with a utility function ui : A → R, which depends on the action
profile taken.

One key assumption is that all of the above is common knowl-
edge among the players. This means that all players know what they
know; they know what they don’t know; they don’t know anything
that isn’t true; and they know all implications of what they know.
One such implication might be “I know that you know that I know
that you know . . . all the details of the game we are playing.”

A strategy si in a NFG is either pure, meaning simply an action, or
mixed, meaning a probability distribution over actions. Define Si =

∆(Ai) as player i’s set of—in general, mixed—5 strategies. Assuming 5 Note that pure strategies are degener-
ate mixed strategies.players employ (mixed6) strategies, they must reason about expected
6 Hereafter, “mixed” is implicit in the
term strategy.utility, where the expectation is taken over their mixture.

Rational players are those who maximize their expected utility.
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For today (at least), we assume rationality on the part of the players.
Let s ∈ S = ∏i∈[n] Si denote a strategy profile for all players;

and let s−i = (s1, . . . si−1, si+1, . . . , sn) ∈ S−i = ∏i ̸=j∈[n] Sj denote
the strategies of all players except player i. We use corresponding
notation for action and other profiles throughout.

A strategy si ∈ Si for player i ∈ [n] is dominant if it is (weakly)
optimal, regardless of the other players’ actions: i.e.,

ui(si, a−i) ≥ ui(s′i, a−i), ∀s′i ∈ Si, ∀a−i ∈ A−i (1)

A strategy vector s ∈ S is a dominant strategy equilibrium (DSE) if
all players play dominant strategies.7 DSE is a worst-case concept; it 7 This condition is sufficient for DSE,

but not necessary. It is also possible to
discover DSE via the iterative deletion
of dominated strategies.

does not rely on the assumption that the other players are rational.

Remark 2.1. If a strategy is dominant regardless of other players’ ac-
tions, it is also dominant regardless of other players’ mixed strategies.

Proof. Fix a player i and assume si ∈ Si is a dominant strategy
for i. Given an arbitrary (mixed) strategy profile s−i, let π(a−i) =

∏j ̸=i sj(aj) denote the joint probability of action profile a−i. Then:

ui(si, s−i) = ∑
a−i

ui(si, a−i)π(a−i)

≥ ∑
a−i

ui(s′i, a−i)π(a−i), ∀s′i ∈ Si

= ui(s′i, s−i), ∀s′i ∈ Si.

The inequality follows from the definition of dominant strategy.

A strategy s∗i ∈ Si (mixed or pure) is a best response for player i to
a fixed other-player strategy profile s−i ∈ S−i if it is expected-utility
maximizing for i:

s∗i ∈ arg max
si∈Si

ui(si, s−i). (2)

A strategy vector s = (si, s−i) ∈ S is a Nash equilibrium (NE) if all
players strategies are best responses to one another. In other words,
no player can increase her expected utility by unilaterally changing
her strategy: i.e.,

ui(si, s−i) ≥ ui(s′i, s−i), ∀i ∈ [n], ∀s′i ∈ Si. (3)

It turns out that not all normal-form games have a pure strategy
Nash equilibrium. Consider the childhood game of Rochambeau (i.e.,
rock-paper-scissors). Rock is preferred to (i.e., a best-response to)
scissors, which in turn is preferred to paper, which in turn is pre-
ferred to rock. This game does, however, have a mixed strategy Nash
equilibrium, which is to play all three actions uniformly at random.
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Perhaps the most important feature of the Nash equilibrium is
its guaranteed existence in mixed strategies in finite games,8 a fact 8 A finite game has a finite number of

players and actions.which was established by Nobel laureate John Nash in 1951.

Theorem 2.2 (Nash, 1951). Every finite game has a mixed strategy Nash
equilibrium.

Unfortunately, despite their guaranteed existence, Nash equilibria
are hard to compute. It turns out that their computation is complete
for a complexity class called PPAD.

The PPAD complexity class differs from other well-known com-
plexity classes such as P and NP in that it concerns function prob-
lems, rather than decision problems: i.e., given a (total) function9 9 Technically, a predicate.

P(x, y) s.t. for all x there exists a y s.t. P(x, y) holds, and given a par-
ticular x, find y s.t. P(x, y) holds. Problems in the PPAD class share
one commonality: at their core lies a fixed point computation.

Analogous to NP-completeness, a problem in the PPAD class is
called PPAD-complete if all problems in PPAD can be reduced to that
problem. In other words, a PPAD-complete problem is one that is at
least as hard to solve as every other problem in the PPAD class.

Theorem 2.3 (2000s). (Chen et al. 2007; Daskalakis et al. 2009) Comput-
ing a Nash equilibrium in two-player, finite-action games is PPAD-complete.

A von Neumann & Morgenstern’s Expected Utility Theory

It is natural to express preferences as comparisons: e.g., “I prefer
apples to bananas.” We can also compare lotteries (i.e., randomized
outcomes): “I prefer a banana with probability 90% to an apple with
probability 50%.” Let Ω denote an outcome space, and let σ and τ

denote lotteries. We write σ ≻ τ to indicate that σ is preferred to τ.

Theorem A.1 (vNM, 1944). Assuming an agent’s preferences over lotteries
satisfy certain axioms, there exists a unique10 utility function u : Ω → R 10 up to affine transformations

s.t. σ ≻ τ iff E[u(σ)] > E[u(τ)]. The axioms are completeness, transitiv-
ity, continuity, and independence of irrelevant attributes (IIA).

Completeness means all lotteries are comparable (σ ⪰ τ or τ ⪰
σ), though, as the notation suggests, the agent may be indifferent
between lotteries. Transitivity means: if σ ⪰ τ and τ ⪰ υ, then
σ ⪰ υ. Continuity is defined as follows: if σ ⪰ τ ⪰ υ, then there
exists p ∈ [0, 1] s.t. the agent is indifferent between the τ and σ with
probability p, and τ and υ with probability 1 − p.

IIA can be understood as follows: if σ is the preferred outcome
among a set of outcomes T, and if σ ∈ S ⊆ T, then σ should be the
preferred outcome in S as well. In other words, removing outcomes
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from a set that are not preferred should not change the preferred
outcome. On the surface, IIA sounds innocuous enough. But No-
bel Laureate Daniel McFadden’s example with three transportation
alternatives, a car, a red bus, and a blue bus, shows that it does not
properly account for substitutes, like red and blue buses.
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