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We describe Myerson’s lemma,1 in which he characterizes the payment 1 Roger B Myerson. Optimal auction
design. Mathematics of operations research,
6(1):58–73, 1981

rule that incentivizes truth telling in single-parameter auctions.

1 Payment Characterization

In single-parameter auction, each bidder i’s valuation is described
by a single parameter vi, which represents, for example, the bidder’s
value for a single good. In such an auction, quasi-linear utilities are
given by: ui(vi, v−i) = vixi(vi, v−i)− pi(vi, v−i).

This lecture concerns a single-parameter auction in which bidder
i’s values vi ∈ Ti = [v i, v i], with lowest and highest types v i, v i ∈ R+.

Theorem 1.1 (Myerson). A single-parameter auction is dominant-strategy
incentive compatibile (DSIC) iff the following two conditions hold:

1. The allocation rule is monotone in values:

xi(vi, v−i) ≥ xi(ti, v−i), ∀i ∈ [n], ∀vi ≥ ti ∈ Ti, ∀v−i ∈ T−i. (1)

2. Payments are computed as follows:

pi(vi, v−i) = vixi(vi, v−i)−
(∫ vi

v i

xi(z, v−i)dz + v ixi(v i, v−i)− pi(v i, v−i)

)
, ∀i ∈ [n], ∀vi ∈ Ti, ∀v−i ∈ T−i.

(2)

Further, if, for all bidders i ∈ [n], the utility ui(v i, v−i) ≥ 0, then these two
conditions imply that the auction is individually rational (IR) as well.

Myerson’s payment formula, Equation (2), is easy to interpret by
visualizing it. We begin by drawing a box vixi(vi, v−i), as in Fig-
ure 1. Next, we subtract the area under the allocation curve, namely∫ vi

v i
xi(z, v−i)dz. We also subtract the box v ixi(v i, v−i). These areas

are depicted in Figure 2. The remaining area is the payment bidder i
makes, assuming pi(v i, v−i) = 0, as shown in Figure 3. In sum, the
payment at a point vi is simply the area to the left of the allocation
function from xi(v i, v−i) to xi(vi, v−i).

Proof. We first prove the if direction, namely that DSIC implies that
the allocation rule is monotone and that payments take the form of
Equation (2). We start with the first condition (monotonicity).
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,

with pi(v i , v i) = 0.

By DSIC, ∀i ∈ [n], if i’s type is vi ∈ Ti, then for all ti ∈ Ti, v−i ∈
T−i,

ui(vi, v−i) ≥ ui(ti, v−i).

Likewise, if i’s type is ti ∈ Ti, then for all vi ∈ Ti, v−i ∈ T−i,

ui(ti, v−i) ≥ ui(vi, v−i).

Equivalently,

vixi(vi, v−i)− pi(vi, v−i) ≥ vixi(ti, v−i)− pi(ti, v−i)

tixi(ti, v−i)− pi(ti, v−i) ≥ tixi(vi, v−i)− pi(vi, v−i).
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Rearrange the expressions to collect payments:

vixi(vi, v−i)− vixi(ti, v−i) ≥ pi(vi, v−i)− pi(ti, v−i)

pi(vi, v−i)− pi(ti, v−i) ≥ tixi(vi, v−i)− tixi(ti, v−i).

Combine the expressions to form one inequality:

vixi(vi, v−i)− vixi(ti, v−i) ≥ pi(vi, v−i)− pi(ti, v−i) ≥ tixi(vi, v−i)− tixi(ti, v−i).

Collect like terms:

vi (xi(vi, v−i)− xi(ti, v−i)) ≥ pi(vi, v−i)− pi(ti, v−i) ≥ ti (xi(vi, v−i)− xi(ti, v−i)) .
(3)

And drop the payment terms:

vi (xi(vi, v−i)− xi(ti, v−i)) ≥ ti (xi(vi, v−i)− xi(ti, v−i)) . (4)

If vi ≥ ti, then in order for this inequality to hold, xi(vi, v−i) cannot
be less than xi(ti, v−i). So, the allocation rule must be monotone (1).

Next, we show that payments must take the form of Equation (2).
Continuing from Equation 3, we divide each expression by vi − ti:

vi

(
xi(vi, v−i)− xi(ti, v−i)

vi − ti

)
≥
(

pi(vi, v−i)− pi(ti, v−i)

vi − ti

)
≥ ti

(
xi(vi, v−i)− xi(ti, v−i)

vi − ti

)
.

If vi ≥ ti, then we can write vi as vi = ti + δ, for some δ ≥ 0:

(ti + δ)

(
xi(ti + δ, v−i)− xi(ti, v−i)

ti + δ − ti

)
≥ pi(ti + δ, v−i)− pi(ti, v−i)

ti + δ − ti
≥ ti

(
xi(ti + δ, v−i)− xi(ti, v−i)

ti + δ − ti

)
.

(5)

Now that we have functions of form

f (x + δ)− f (x)
δ

,

we can compute the limit of these functions as δ → 0 by computing
the corresponding derivatives.

By Lebesgue’s theorem, the limits of the RHS and the LHS of
Equation (5) as δ → 0 must exist almost everywhere (a.e.).2 Moveover, 2 A function is almost everywhere

differentiable if its derivative exists
everywhere except on a set of measure
0. By Lebesgue’s theorem on the differ-
entiability of monotonic functions, the
allocation rule xi is almost everywhere
differentiable since its domain, i.e., the
type space, is bounded. This weaker
notion of differentiability allows us to
conclude that both limits exist as δ → 0,
and that they are (Lebesgue) integrable.

these limits are equal a.e.. So by the squeeze theorem, since the upper
and lower bounds of the middle expression are equal a.e., the latter
must also equal this value a.e.. Finally, we observe that the middle
expression corresponds to the derivative of the pricing rule, while
the LHS and the RHS of Equation (5) correspond to a function that
depends on the derivative of the allocation function. Therefore,

z
(

dxi(z, v−i)

dz

)
=

dpi(z, v−i)

dz
a.e..

Next, we integrate both sides from the lowest to the highest type:3 3 By the definition of the Lebesgue
integral, the value of the integral of
a function on sets of measure 0 is 0.
Therefore, integrating both sides of this
equality, which was defined only almost
everywhere, turns it into an equality
that is defined everywhere!
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∫ vi

v i

z
(

dxi(z, v−i)

dz

)
dz =

∫ vi

v i

dpi(z, v−i)

dz
dz

= pi(vi, v−i)− pi(v i, v−i).

We then integrate the left-hand side by parts:∫ b

a
u dv = uv|ba −

∫ b

a
v du,

where we let

u = z du = dz

dv =
dxi(z, v−i)

dz
dz v = xi(z, v−i),

to get∫ vi

v i

z
(

dxi(z, v−i)

dz

)
dz = zxi(z, v−i)|vi

v i
−
∫ vi

v i

xi(z, v−i)dz

= vixi(vi, v−i)− v ixi(v i, v−i)−
∫ vi

v i

xi(z, v−i)dz.

Therefore,

pi(vi, v−i)− pi(v i, v−i) = vixi(vi, v−i)− v ixi(v i, v−i)−
∫ vi

v i

xi(z, v−i)dz,

which implies

pi(vi, v−i) = vixi(vi, v−i)−
(∫ vi

v i

xi(z, v−i)dz + v ixi(v i, v−i)− pi(v i, v−i)

)
.

We now prove the only if direction, namely that if the allocation
rule is monotone and payments take the form of Equation (2), then
the DSIC constraints must hold: i.e., bidding neither vi + δ nor vi − δ,
for some δ > 0, is preferable to bidding vi.

By bidding vi + δ for some δ > 0, bidder i’s utility,4 is 4 up to a constant, namely
pi(v i , v−i)− v ixi(v i , v−i).

ui(vi + δ, v−i; vi) = vixi(vi + δ, v−i)− pi(vi + δ, v−i)

= vixi(vi + δ, v−i)−
(
(vi + δ) xi(vi + δ, v−i)−

∫ vi+δ

v i

xi(z, v−i)dz

)

= −δxi(vi + δ, v−i) +
∫ vi+δ

v i

xi(z, v−i)dz.

Comparing utilities between a truthful bid and any higher bid:5 5 The constants cancel.

∫ vi

v i

xi(z, v−i)dz −
[
−δxi(vi + δ, v−i) +

∫ vi+δ

v i

xi(z, v−i)dz

]

= δxi(vi + δ, v−i)−
∫ vi+δ

vi

xi(z, v−i)dz
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≥ 0.

This final inequality follows from the monotonicty of the allocation
function. For all γ ∈ [vi, vi + δ], xi(γ, v−i) ≤ xi(vi + δ, v−i). Therefore,
the integral is upper-bounded by δxi(vi + δ, v−i). See Figure 4.

The situation is analogous for vi − δ. By bidding this amount,
bidder i’s utility,6 is 6 up to the same constant.

ui(vi − δ, v−i; vi) = vixi(vi − δ, v−i)− pi(vi − δ, v−i)

= vixi(vi, v−i)−
(
(vi − δ) xi(vi + δ, v−i)−

∫ vi−δ

v i

xi(z, v−i)dz

)

= δxi(vi − δ, v−i) +
∫ vi−δ

v i

xi(z, v−i)dz.

Comparing utilities between a truthful bid and any lower bid:7 7 Again, the constants cancel.

∫ vi

v i

xi(z, v−i)dz −
[

δxi(vi − δ, v−i) +
∫ vi−δ

v i

xi(z, v−i)dz

]

=
∫ vi

vi−δ
xi(z, v−i)dz − δxi(vi − δ, v−i)

≥ 0.

This final inequality follows from the monotonicty of the allocation
function. For all γ ∈ [vi − δ, vi], xi(γ, v−i) ≥ xi(vi − δ, v−i). Therefore,
the integral is lower-bounded by δxi(vi − δ, v−i). See Figure 4.

Since δ = 0 is optimal, the DSIC constraints hold.

vi − δ vi vi + δ vi − δ vi vi + δ

xi(vi − δ, v−i)

xi(vi, v−i)

xi(vi + δ, v−i)

z

xi(z, v−i)

Allocation Function Figure 4: Bidding truthfully vs. not.
Bidding truthfully is undominated
where the allocation function increases,
and is dominated otherwise.
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Finally, we show IR. The utility of each bidder i ∈ [n], according to
the payment rule, Equation (2), is

ui(vi, v−i) = vixi(vi, v−i)− pi(vi, v−i)

= vixi(vi, v−i)−
(

vixi(vi, v−i)−
(∫ vi

v i

xi(z, v−i)dz + v ixi(v i, v−i)− pi(v i, v−i)

))

=
∫ vi

v i

xi(z, v−i)dz + v ixi(v i, v−i)− pi(v i, v−i).

To ensure that this final quantity is non-negative requires only that
ui(v i, v−i) ≥ 0, for all bidders i ∈ [n].

More specifically, satisfying this inequality requires that v ixi(v i, v−i) ≥
pi(v i, v−i), which is achieved, for example, in auctions in which the
lowest types v i ∈ Ti are allocated nothing and pay nothing (i.e., when
xi(v i, v−i) = 0 and pi(v i, v−i) = 0, for all v−i ∈ T−i). Notably, as
per the payment formula, only winners make payments in all such
auctions (when allocation function is 0, so is its integral).
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