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We prove the celebrated envelope theorem. Then, by way of this theorem, we
derive the symmetric equilibrium in first-price auctions and Myerson’s payment
characterization for DSIC auctions. When orinignally drafted, these notes
followed the presentation in Quint;1 by now, there are likely deviations. 1 Dan Quint. Some beautiful theorems with

beautiful proofs. University of Wisconsin–
Madison, 2014

1 Envelope Theorem

We prove the envelope theorem in its simplest form. In more interesting/
complicated versions, the constraint set depends on the parameter θ.
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Consider an optimization problem

V(θ) = max
a∈A

f (a; θ) .

We write f (·; θ) to indicate that f is “parameterized" by some θ ∈ Θ.2 This 2 Such parameterizations are also some-
times denoted with subscripts instead of
semicolons: i.e., fθ(·).

parameterization is intended to indicate that optimization over the set A is in
fact an optimization over a strategy space of functions s : Θ → A from the
parameter space Θ to A.

Theorem 1.1. Let A∗(θ) = arg maxa∈A f (a; θ), and assume A∗(θ) is
nonempty, with s∗(θ) an element of A∗(θ), so that V(θ) = f (s∗(θ); θ). If
V(θ) and f (a; θ), for all a ∈ A, are differentiable at θ ∈ Θ, then

V′(θ) =
d maxa∈A f (a; θ)

dθ
=

d f (s∗(θ); θ)

dθ
.
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Proof. By definition, if V is differentiable at θ, then

V′(θ) = lim
ϵ→0

V(θ + ϵ)− V(θ)
ϵ

= lim
ϵ→0

V(θ)− V(θ − ϵ)

ϵ
.

Since V(θ + ϵ) = maxa∈A f (a; θ + ϵ) ≥ f (s∗(θ); θ + ϵ), it follows that

V′(θ) = lim
ϵ→0

V(θ + ϵ)− V(θ)
ϵ

≥ lim
ϵ→0

f (s∗(θ); θ + ϵ)− f (s∗(θ); θ)

ϵ
=

d f (s∗(θ); θ)

dθ
.

Similarly, since V(θ − ϵ) = maxa∈A f (a; θ − ϵ) ≥ f (s∗(θ); θ − ϵ), it
follows that

V′(θ) = lim
ϵ→0

V(θ)− V(θ − ϵ)

ϵ
≤ lim

ϵ→0

f (s∗(θ); θ)− f (s∗(θ); θ − ϵ)

ϵ
=

d f (s∗(θ); θ)

dθ
.

The result now follows, as

d f (s∗(θ); θ)

dθ
≤ V′(θ) ≤ d f (s∗(θ); θ)

dθ
.

Example 1.2. The following functions are shown in the figure above:

f (a1; θ) = 1

f (a2; θ) = θ/4 + 3/2

f (a3; θ) = θ + 1

Observe that f (a; θ) is differentiable, for all a ∈ A, and at all θ ∈ Θ, with

d f (a1(θ); θ)

dθ
= 0

d f (a2(θ); θ)

dθ
= 1/4

d f (a3(θ); θ)

dθ
= 1

Although V(θ) is not differentiable at {−2, 2/3}, the envelope theorem gives:

V′(θ) =



d f (a1(θ); θ)

dθ
θ < −2

d f (a2(θ); θ)

dθ
−2 < θ < 2/3

d f (a3(θ); θ)

dθ
2/3 < θ

Therefore, 
0 θ < −2

1/4 −2 < θ < 2/3

1 2/3 < θ
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2 Key Observation

Recall that an auction is defined by two rules, an allocation rule and a
payment rule. We consider a single-parameter auction for one good in which
each bidder’s i’s valuation/value for the good is described by one number,
vi ∈ Ti, based on which she chooses her bid bi ∈ Bi.

Fixing all other agents’ strategies s−i : T−i → B−i, we abbreviate bidder
i’s payment when she bids bi by pi(bi)

.
= pi(bi, s−i(·)). Her quasilinear

utility if she is allocated the good is then vi − pi(bi). Furthermore, since her
allocation probability is xi(bi), her expected utility is vixi(bi)− pi(bi).

In this setting, the envelope theorem yields an interesting insight about the
optimal expected utility function, namely that its derivative is the (expected)
allocation function.

Theorem 2.1. Given a bidder i with value vi and quasilinear utility function
ui(bi) = vixi(bi)− pi(bi), so that her optimal utility function is given by

U∗(vi) = max
bi∈Bi

vixi(bi)− pi(bi) .

The derivative of her optimal utility function with respect to her value is her
allocation function: i.e.,

dU∗(vi)

dvi
= xi(b∗i ) ,

where b∗i = s∗i (vi) denotes a utility-maximizing bid.

Proof. First, letting f (bi; vi) = vixi(bi)− pi(bi),

U′
i (vi) =

d
dvi

max
bi∈Bi

f (bi; vi) (1)

=
d

dvi
max
bi∈Bi

vixi(bi)− pi(bi) (2)

=
d

dvi
vixi(b∗i )− pi(b∗i ) (3)

Equation 2 follows from the definition of optimal expected utility, while
Equation 3 follows via the envelope theorem.

Next, by the sum rule of calculus:

d
dvi

vixi(b∗i )− pi(b∗i ) =
d

dvi
vixi(b∗i )−

d
dvi

pi(b∗i ) . (4)

Applying the product rule to the first term of Equation 4 yields:

d
dvi

vixi(b∗i ) = xi(b∗i ) + vi
dxi(b∗i )

dvi
. (5)

Further simplification now requires the chain rule.
Recall the chain rule: if y = f (u) and u = g(v), then

dy
dv

=
dy
du

du
dv

.
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Letting f = xi(u) and g = s∗i (vi), so that f = xi(s∗i (vi)), yields:

dxi(b∗i )
dvi

=
dxi(b∗i )

dbi

dbi
dvi

(6)

=
dxi(bi)

dbi

dbi
dvi

∣∣∣
bi=b∗i

(7)

=
dxi(si(vi))

dsi(vi)

dsi(vi)

dvi

∣∣∣
si(vi)=s∗i (vi)

. (8)

But now the first-order optimality conditions imply that the second term is
necessarily zero, since s∗i (vi) is a utility-maximizing bid. As the only non-
zero term in Equation 5 is xi(s∗i (vi)), the theorem is proved.

3 Equilibrium Derivations via the Envelope Theorem

Next, let’s use the envelope theorem to analyze a symmetric first-price
auction, meaning one in which the bidders’ values are drawn i.i.d. from a
bounded distribution F on [v , v ], for some v ≤ v ∈ R.

Assume a symmetric equilibrium s∗(v) that is non-decreasing in v, so that
a bidder with the highest value wins. At such an equilibrium, if the allocation
probability is x(v) and the winner pays her bid s∗(v), each bidder’s expected
utility at equilibrium is given by U∗(v) = x(v)(v − s∗(v)). The probability
that a bidder i with value v wins is the probability that v ≥ vj, for all j ̸= i:
i.e., Fn−1(v). Each bidder’s expected utility at equilibrium is thus:

U∗(v) = Fn−1(v)(v − s∗(v)) . (9)

By Theorem 2.1, dU∗(v)
dv = x(s∗(v)). Moreover, by the monotonicity

assumption (i.e., s∗(v) is non-decreasing in v), x(s∗(v)) = Fn−1(v).
Therefore, by the fundamental theorem of calculus,

U∗(v) =
∫ v

v
Fn−1(t)dt , (10)

as U∗(v ) = 0. Setting these two expressions for U∗(v) (Equations 9 and 10)
equal to one another yields

Fn−1(v)(v − s∗(v)) =
∫ v

v
Fn−1(t)dt , (11)

from which it follows that

s∗(v) = v −

∫ v
v Fn−1(t)dt

Fn−1(v)
. (12)

Finally, since3 3 See Math’l Aside at the start of Lecture 5
on Myerson’s optimal auction design.

vFn−1(v)−
∫ v

v
Fn−1(t)dt =

∫ v

v
t dFn−1 , (13)

https://cs.brown.edu/courses/csci1440/lectures/2023/myerson_revenue.pdf
https://cs.brown.edu/courses/csci1440/lectures/2023/myerson_revenue.pdf
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it follows that

s∗(v) =

∫ v
v t dFn−1

Fn−1(v)
. (14)

In other words, at equilibrium in a symmetric first-price auction, bidders
shade their bids in such a way that the result is the expected bid of the bidder
with the second-highest value, conditioned on their value being highest.

Remark 3.1. This derivation establishes necessary conditions for s∗ to be a
symmetric equilibrium of a symmetric first-price auction: i.e., if s∗ is such
an equilibrium, then it must take the form of Equation 12 (or equivalently,
Equation 14).

Last week, we proved this same result in the special case of F = U[0, 1].
We can easily recover last week’s result from this week’s as follows. First,
since v = 0 and Fn−1(t) = tn−1,∫ v

0
Fn−1(t)dt =

∫ v

0
tn−1dt =

1
n

tn
∣∣∣v
0
=

vn

n
.

Second, plugging this calculation into Equation 12, and again using the fact
that Fn−1(v) = vn−1, yields:

s∗(v) = v − vn

nvn−1 = v − v
n
= v

(
1 − 1

n

)
=

(
n − 1

n

)
v .

4 Myerson’s Payment Formula via the Envelope Theorem

Finally, again using the envelope theorem, we prove (one direction of)
Myerson’s payment characterization theorem—that the DSIC assumption
implies Myerson’s payment formula.

Proof. Reverting back to our original notation, we denote bidder i’s optimal
utility (or value function) by Vi. By Theorem 2.1, V′

i (vi) = xi(s∗i (vi)).
Moreover, by the DSIC assumption, bidder i’s expected utility is maximized
at vi: i.e., s∗i (vi) = vi. Therefore, V′

i (vi) = xi(vi).
More specifically, V′

i (vi, v−i) = xi(vi, v−i). But then, by ?? (which
invokes the fundamental theorem of calculus),

Vi(vi, v−i)− Vi(v i, v−i) =
∫ vi

v i

V′
i (z, v−i)dz =

∫ vi

v i

xi(z, v−i)dz .

Next, letting pi(vi, v−i) denote bidder i’s expected payment, we can also
express bidder i’s expected utility Vi(vi, v−i) as vixi(vi, v−i)− pi(vi, v−i).

It now follows that

vixi(vi, v−i)− pi(vi, v−i)−
(
v ixi(v i, v−i)− pi(v i, v−i)

)
=

∫ vi

v i

xi(z, v−i)dz .

In other words,

pi(vi, v−i) = vixi(vi, v−i)−
∫ vi

v i

xi(vi, v−i)dz + pi(v i, v−i)− v ixi(v i, v−i) .
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