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We state and prove a Bayes-Nash Equilibrium strategy for the first-
price auction, assuming the bidders’ values are drawn i.i.d. from the
uniform distribution on [0, 1].

1 The First-Price, Sealed-Bid Auction

A first-price auction is an example of a pay-your-bid auction. In this
auction format, whoever submits the highest bid is the winner, and
she pays what she bid, namely the highest bid. Ties are broken ran-
domly: if multiple bidders submit the highest bid, exactly one of
them is chosen as the winner.

Theorem 1.1. In a first-price auction with bidders i ∈ [n], if all bidders’
values vi are drawn i.i.d.1 from the uniform distribution on [0, 1], then the 1 independently, and from identical

distributions
bidding strategies bi =

(
n − 1

n

)
vi comprise a Bayes-Nash equilibrium.

Proof. Fix a bidder i. We assume that all bidders besides i bid accord-
ing to this formula, and argue that bidder i should do the same.

Let z represent i’s bid. There are two possible outcomes:

• Case 1: Someone outbids i: i.e., there exists a bidder j ̸= i s.t.(
n − 1

n

)
vj > z. In this case, i does not win the good, so ui = 0.

• Case 2: No one outbids i: i.e., for all bidders j ̸= i, z ≥
(

n − 1
n

)
vj.

In this case, i wins the good,2 so ui = vi − z. 2 We assume ties are broken in i’s favor.

Bidder i’s expected utility is equal to the probability of Case 1

times the utility it earns in Case 1 plus the probability of Case 2 times
the utility it earns in Case 2. As the utility earned in Case 1 is zero,
we need only concern ourselves with the probability of Case 2.

The probability of this latter event is:

Pr
(

z ≥
(

n − 1
n

)
vj, for all bidders j ̸= i

)
(1)

= Pr
(

vj ≤
nz

n − 1
, for all bidders j ̸= i

)
(2)

= ∏
j ̸=i

Pr
(

vj ≤
nz

n − 1

)
(3)

=

(
F
(

nz
n − 1

))n−1
(4)
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=

(
nz

n − 1

)n−1
(5)

Equation 2 follows via algebra. Equation 3 follows from the fact that
the values are drawn independently. Equation 4 is the definition of a
CDF, while Equation 5 plugs in the CDF of the uniform distribution,
specifically.

Bidder i’s expected utility is thus:

Evi∼U[0,1][ui] =

(
nz

n − 1

)n−1
(vi − z)︸ ︷︷ ︸

i wins

+

(
1 −

(
nz

n − 1

)n−1
)
· 0︸ ︷︷ ︸

i loses

=

(
n

n − 1

)n−1
zn−1(vi − z).

Next, we take the derivative of Evi∼U[0,1][ui] with respect to z and

set it equal to 0, to maximize i’s expected utility. Since
( n

n−1
)n−1 is a

just a constant, it eventually drops out, so we drop it from the start.
By the product rule,

d
dz

E[ui] =
d
dz

[
zn−1(vi − z)

]
= (n − 1)zn−2(vi − z)− zn−1

Setting this derative equal to zero yields:

d
dz

E[ui] = 0

(n − 1)zn−2(vi − z)− zn−1 = 0

(n − 1)(vi − z)− z = 0

(n − 1)vi − nz = 0

Therefore, bidder i maximizes her utility by bidding:

z =

(
n − 1

n

)
vi,

so that the given bidding strategy is indeed a Bayes-Nash equilibrium
in a first-price auction under the stated assumptions.

Technical Note. Since a bid of n−1
n guarantees that i wins the

auction, it sufficies to restrict z to lie in the range [0, n−1
n ]. A rigorous

proof would note that while z =
(

n−1
n

)
vi yields positive utility,

neither of the two extreme points, z = 0 nor z = n−1
n , do; and would

also verify that the second derivative of E[ui] is negative at z =(
n−1

n

)
vi. We leave this final step as an exercise for the reader.
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