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We introduce a new multiparameter setting, for which we can find an
approximately welfare-maximizing EPIC auction. We prove the EPIC
property by making use of our recipe for doing so: 1. we prove sincere
bidding in the auction yields an approximate VCG outcome, and 2. we
show consistent bidding strategies dominate inconsistent ones. Not
only does this mechanism satisfy desired performance and incentive
guarantees (up to some additive error), it is also tractable.

1 Diminishing Marginal Valuations

We introduce a new instance of the multiparameter setting, so-called
diminishing marginal valuations for homogeneous goods. Rather
than additive or unit-demand valuations, here each bidder’s marginal
value for an additional copy of the good is weakly decreasing.

• We assume n bidders and m homogeneous (i.e., identical) goods,
with bidders indexed by i, and goods, by j.

• Each bidder i has a marginal value µi(j) for her jth copy of the
good, meaning her value for acquiring a jth copy of the good,
given she already have j − 1 copies in its possession.

• Each bidder i’s marginal values are weakly decreasing: µi(1) ≥
µi(2) ≥ · · · ≥ µi(m).

Our goal is to construct an approximately welfare-maximizing EPIC
multiunit ascending auction for this scenario.

2 A Direct Mechanism: A Sanity Check

Designing a welfare-maximizing DSIC direct mechanism “reduces
to”1 designing a welfare-maximizing EPIC indirect mechanism, in 1 See Appendix ??

the sense that a polynomial-time solution to the latter can be used to
construct a polynomial-time solution to the former via the revelation
principle. Therefore, solving for a welfare-maximizing EPIC indirect
mechanism is at least as hard as solving for a welfare-maximizing
DSIC direct mechanism. As a result, if no such DSIC direct mech-
anism exists (one that is welfare-maximizing in polynomial time),
neither can such an EPIC indirect mechanism.

As a result of this argument, before we embark upon the design of
an EPIC indirect mechanism that maximizes welfare in polynomial
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time, we best do a quick sanity check: can we design a DSIC direct
mechanism that maximizes welfare in polynomial time?

Fortunately, we can solve this problem in the affirmative in the
direct setting. In particular, the welfare-maximizing allocation can be
computed via a simple greedy allocation algorithm:

• Collect a vector of bids b from all bidders i ∈ [n], with bid bi(j)
representing i’s bid on the jth copy of the good.

• Sort the bids, and then allocate the goods to the bidders who sub-
mitted the highest m bids, breaking ties arbitrarily.

For example, if bi(4) is among the highest m bids, but bi(5) is not,
then bidder i is allocated four copies, which we denote as xi = 4.

As usual, to achieve the VCG outcome, we combine this allocation
algorithm with payments that charge bidders their externalities.
For each bidder i, we sort the bids by bidders other than bidder i from
greatest to least, and then establish the following groupings.

β1 β2 · · · βm−xi︸ ︷︷ ︸
A

βm−xi+1 βm−xi+2 · · · βm︸ ︷︷ ︸
B

βm+1 βm+2 · · · βmn︸ ︷︷ ︸
C

The bids in group A are those that are allocated regardless of i’s pres-
ence. The bids in group C are those that are not allocated regardless
of i’s presence. The bids in group B are those whose allocation de-
pends on i’s presence. These bids comprise bidder i’s externality. We
therefore charge bidder i, in total, for all xi copies in group B, the
sum of these xi bids: i.e.,

pi(xi) =
xi

∑
j=1

βm−xi+j.

By charging each bidder its externality, we charge the VCG pay-
ments, thereby guaranteeing the DSIC property.

Example 2.1. Here is an example from the paper that introduced
the clinching auction,2 the subject of this lecture. It is loosely based 2 Lawrence M. Ausubel. An efficient

ascending-bid auction for multiple
objects. American Economic Review,
94(5):1452–1475, December 2004

on the first US Nationwide Narrowband spectrum auction in where
there were five bidders and five licenses.

The bidders’ marginal values are as follows:

License A B C D E

First 123 74 125 84 44

Second 113 5 125 64 24

Third 103 3 49 7 5

If we interpret the values in this table as bids, and sort them from
high to low, we arrive at 125, 125, 123, 113, 103, etc., which implies
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that C wins two licenses, and A wins three. It remains to determine
the VCG payments associated with this allocation.

Sorting the bids sans C yields: 123, 113, 103, 84, 74, etc. As C’s
two bids of 125 displace D, who bid 84, and B who bid 74, C’s VCG
payments are 84 and 74.

Similarly, sorting the bids sans A yields: 125, 125, 84, 74, 64, etc. As
A’s three bids of 123, 113, and 103 displace D, who bid 84, B who bid
74, and D again who bid 64, A’s VCG payments are 84, 74, and 64.

Once again, when bidder i is allocated xi copies of the good, its
VCG payment is the sum of xi bids, one per copy of the good. If we
imagine adding i’s bids to the sorted list of all other bidders’ bids,
one at a time, each additional winning bid placed by i displaces an-
other lower bid. The smallest bid that i displaces can be viewed as i’s
payment for its first copy of the good; the second-smallest bid is then
i’s payment for its second copy of the good; and so on. Payments for
additional copies of a good are thus weakly increasing (even though
values are—by assumption—weakly decreasing).

Building on these observations, we can express bidder i’s VCG
payment for good j in terms of the other bidders’ demands. Define
bidder k’s demand set at price q, Dk(q) = maxj { j ≤ m | µk(j) ≥ q }.
Now, bidder i’s payment for the jth copy is given by:

pi(j) = inf

{
q

∣∣∣∣∣ ∑
k ̸=i

Dk(q) ≤ m − j

}
. (1)

Were the payment set at a price any lower than this one, the demand
of all bidders other than i would jump to m − j + 1, rather than just
m − j. In other words, this payment is the smallest price at which the
demand of all bidders other than i is no more than m − j.

As expected, these payments are weakly increasing in j. Each
additional copy of the good costs no less than the previous, as other
bidders’ demands fall as the price rises.

3 An Indirect Mechanism: The Clinching Auction

Having satisfied the precondition for potential success, we now set
our sights on a welfare-maximizing EPIC ascending auction. To this
end, we present the clinching auction:

• Initialize q = 0.

• Collect demand sets from all bidders. (Initially, when q = 0, it
should be that Di(q) = m, for all bidders i.)

• Alternate between incrementing q by ϵ and collecting demand sets.
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• Termination rule: ∑n
i=1 Di(q) ≤ m.

• Activity rule: Ensure that no bidder’s demand increases over time:
i.e., bidder’s demands can only decrease as prices increase.

• Let q∗ denote the final price. At this price, ∑i∈[n] Di(q∗) ≤ m <

∑i∈[n] Di(q∗ − ϵ)]. (If ∑i∈[n] Di(q∗ − ϵ)] were equal to m, then
the auction would have terminated at price q∗ − ϵ.) We can thus
allocate yi copies to bidder i s.t. yi ∈ [Di(q∗), Di(q∗ − ϵ)] and
∑i yi = m.

One way to achieve such an allocation is to allocate to bidder i
her final demand, namely Di(q∗) copies. Then, if any unallocated
goods remain, they can be allocated at random to any bidders
with leftover demand at price q∗ − ϵ: i.e., bidders i for whom
Di(q∗ − ϵ)− Di(q∗) > 0.

• Charge bidder i (within ϵ of) its externality. Specifically, charge
bidder i for its jth copy of the good:

qi(j) = −ϵ + min
t∈Z+

{
ϵt

∣∣∣∣∣ ∑
k ̸=i

Dk(ϵt) ≤ m − j

}
. (2)

As intended, this price is (near) the price at which the demand of
all other bidders falls below m − j.

N.B. When ∑k∈[n] Dk(ϵt) = m, it is not necessary to subtract ϵ

from ϵt. But when ∑k∈[n] Dk(ϵt) < m, the situation is analogous to
the last remaining bidders all dropping out at the same time in an
English or a Japanese auction, in which case the (one) good is sold
at the final price less ϵ to ensure individual rationality.

Example 3.1. Continuing the setup in Example 2.1 and assuming
ϵ = 1, the clinching auction proceeds as follows, with demands
depicted only at the most relevant prices:

Price A B C D E

10 3 1 3 2 2

25 3 1 3 2 1

45 3 1 3 2 0

50 3 1 2 2 0

65 3 1 2 1 0

75 3 0 2 1 0

85 3 0 2 0 0

At price 65, the aggregate demand of all bidders other than bidder
A falls below the total supply of 5. Hence, bidder A “clinches” its
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first license at this price.3 The license is “clinched,” because the fact 3 Technically, the price should be 65 less
ϵ, but we ignore this adjustment factor.that the other bidders’ demands have fallen below 5 guarantees that

bidder A must win this license.
At price 75, the aggregate demand of all bidders other than bidder

A falls below 4, so A clinches its second license at this price. In ad-
dition, the aggregate demand of all bidders other than bidder C falls
below 5, so C clinches its first license at this price.

Note that the auction maintains separate counters for each bidder:
i.e., for A, the aggregate demand of others falls below 4, while for C,
it falls below 5. Bidder A displaced its first bidder, namely D, at price
65, and is displacing its second bidder, namely B, at price 75, while
bidder C is displacing its first bidder, again B, at price 75.

The auction terminates at price 85, when bidder A clinches its
third license, and bidder C, its second, both displacing bidder D, and
total demand meets total supply. In sum, bidder A pays 65 + 75 + 85
for its three licenses, and bidder C pays 75 + 85 for its two licenses.
As expected, prices on additional licenses are weakly increasing. (In
fact, in this example, they are strictly increasing.)

The outcome of the clinching auction in this example (and always;
see Proposition 4.1) is efficient (up to mϵ). In contrast, in this exam-
ple, a uniform-price auction4 would not have yielded an efficient out- 4 A uniform-price auction for multiple

copies of a homogeneous good is one
that charges the same price for all
copies of the good.

come, as it would have been in bidder A’s best interest to decrease its
demand to two licenses when the price reached $75 rather than win
all three licenses for $85 each. Winning only two licenses, A’s utility
would have been 236 − 2(75) = 86, whereas winning all three, A’s
utility would have been 339 − 3(85) = 84. A uniform-price auction is
thus susceptible to strategic demand reduction.

4 The Clinching Auction is EPIC

To prove the clinching auction is approximately EPIC, we follow
the design recipe for EPIC auctions. That is, we first show that the
outcome of sincere bidding in the clinching auction is approximately
VCG (both allocation and payments; Steps 1 and 2 of the design
recipe, respectively). We then show that no inconsistent deviations
are preferable to sincere bidding (Step 3).

We first show that any allocation the clinching auction attains is
welfare maximizing up to mϵ (Step 1).

Proposition 4.1. Assuming sincere bidding, the clinching auction yields
total welfare within mϵ of the optimal.

En route to showing that the payments in the clinching auction
are close to those of VCG (Step 2), we first show that the clinching
auction is IR: i.e., no bidder earns negative utility by participating.
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Lemma 4.2. The clinching auction is IR.

Proof. Assume bidder i wins j copies of the good in the clinching
auction, with final price q∗. By the definition of demand sets, j ≤
Di(q∗ − ϵ) iff µi(j) ≥ q∗ − ϵ. Further, by the design of the payment
rule (Equation 2), qi(j) ≤ q∗ − ϵ, for all bidders i and all copies of the
good j. Therefore, µi(j) ≥ qi(j), for all bidders i and goods j.

Theorem 4.3. Given a multiparameter auction setting in which all bidders’
have diminishing marginal valuations, the difference in utility earned by a
truthful bidder in the VCG auction, assuming others also bid truthfully, and
the same bidder bidding sincerely in the clinching auction, assuming others
also bid sincerely, is at most mϵ.

Having completed Steps 1 and 2 of the EPIC auction design recipe,
we have established that sincere bidding in the clinching auction
is an EPNE up to mϵ, among consistent strategies. The remaining
piece of this puzzle, then, is to further show that sincere bidding in
the clinching auction is an EPNE up to mϵ, among consistent and
inconsistent strategies: i.e., that no inconsistent deviations would
yield substantially greater utility than sincere bidding. This claim is
established in the following theorem.

Theorem 4.4. The clinching auction is EPIC, up to mϵ.

Proof. Assume all bidders except bidder i bid sincerely. Conse-
quently, other bidders’ behaviors are not impacted by i’s strategy.
Moreover, i’s payments are dictated entirely by the other bidders’
demands, which again, i cannot influence.

Under these circumstances, we argue that i cannot benefit from
bidding inconsistently. To bid inconsistently in the clinching auction
would be to report false demand sets. But, given the activity rule,5 5 At long last, we discover the pur-

pose of the activity rule. It rules out
inconsistent bidding.

which ensures that bidders’ demands can never increase, all such
reports are in fact consistent with some valuation or another. So it is
not actually possible to bid inconsistently in the clinching auction.

We have already established that bidding sincerely in the clinching
auction is an EPNE up to mϵ, among consistent strategies. As there
are no inconsistent strategies, it is likewise EPIC up to mϵ.
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