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We define competitive equilibrium, and present a method of computing these
equilibria in unit demand markets. This method is based on the theory of strong
duality in linear programming (LP). Specifically, the primal of the LP encodes
the equilibrium allocation, while the dual encodes the equilibrium prices.

1 Competitive Equilibrium

En route to designing an EPIC auction for unit-demand markets, we take
a detour leaving game-theoretic incentives behind, and instead shift our
attention to economic equilibrium, specifically competitive equilibrium,
which is also sometimes called Walrasian equilibrium.

Consider a market M = (n, m, (vi)i∈[n]) comprising n agents with quasi-
linear utilities and m goods, in which each agent’s valuation function is unit
demand: i.e., agent i’s value for bundle x ∈ {0, 1}m is given by:

vi(x) = max
j∈[m]:xj=1

vij.

An allocation X ∈ {0, 1}n×m is a mapping from goods to agents, rep-
resented as a matrix s.t. xij ∈ {0, 1} denotes the quantity of good j ∈ [m]

allocated to agent i ∈ [n]. Goods are assigned (anonymous) prices p ∈ Rm
+.

A pair comprising an allocation and prices (X∗, p∗) is said to be a com-
petitive (or Walrasian) equilibrium of such a market M iff

WE1: Agent stability Given prices p∗, all agents i ∈ [n] maximize their
utility at allocation X∗, i.e., for all i ∈ [n], x∗i ∈ arg maxx∈{0,1}m ui(x),
where

ui(x) = max
j∈[m]:xj=1

vij − pj

WE2: Market clearance The markets clear, meaning 1. the allocation is
feasible and 2. Walras’ law holds.

In words, an allocation is feasible iff no good is overallocated: i.e., each
good is allocated to at most one agent.

Walras’ law is a way of equating supply and demand. It requires that the
total monetary value of demand equal the total monetary value of supply.
That is, the monetary value of excess demand (and excess supply, as well)
must be zero. Another (equivalent) interpretation of Walras’ law is: if a
good is not allocated, then it is necessarily priced at zero.

Mathematically,

1. feasibility: ∑i∈[n] x∗i ≤ 1m
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2. Walras’ law: p∗ ·
(

1m − ∑i∈[n] x∗i
)
= 0.

Or, in more detail,

1. feasibility: for all j ∈ [m], ∑i∈[n] x∗ij ≤ 1

2. Walras’ law: for all j ∈ [m], p∗j ·
(

1 − ∑i∈[n] x∗ij
)
= 0.

Importantly, competitive equilibria have been shown to exist in broad
classes of markets. Moreover, by the first welfare theorem of economics,
competitive equilibria are necessarily welfare maximizing. The second wel-
fare theorem is something like a converse to the first welfare theorem: it pro-
vide conditions under which prices can be attached to a welfare-maximizing
allocation so that a competitive equilibrium ensues. This latter theorem gives
rise to a method for searching for competitive equilibria called Negishi’s
method: first, find a welfare-maximizing allocation X∗; second, try to find
prices p∗ that support that allocation, in the sense that together (X∗, p∗)

comprise a competitive equilibrium.
Next, we look at a couple of examples of unit-demand markets, and try

to identify their competitive equilibria via Negishi’s method. Recall that the
first step is to find a welfare-maximizing allocation. In unit-demand markets,
solving for a welfare-maximizing allocation can be posed as a maximum
weight matching problem on a bipartite graph, i.e., a problem of assigning
goods to agents so as to maximize welfare.
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Figure 1: An example of a unit-demand
market with four agents and one good.

Example 1.1. Consider the market in Figure 1. The welfare-maximizing
allocation X∗ in this market is simply to assign the good g to agent A1. The
question then becomes, what prices support this allocation, so that together
the allocation and prices form a competitive equilibrium?

WE2 is irrelevant in this market under this allocation, since all goods are
allocated. The only question then is, what prices ensure agent stability?

Does a price of 2.5, for example, guarantee agent stability? No, because at
that price, agents A1 and A2 would both include the good g in their demand
sets, but this good is allocated only to A1. Therefore, agent A2’s value for
the good serves as a lower bound on the price that can guarantee agent A1’s
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stability, while agent A1’s value for the good serves as an upper bound.
Indeed all prices in the range [3, 4] support the allocation X∗.
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Figure 2: An example of a market with two
agents and three goods.

Example 1.2. Now consider the market in Figure 2 with two agents, A and
B, and three goods, f , g, and h, where the agents’ valuations are indicated by
the weights on the edges. That is, agent A values good f at 1 and good g at 2,
while agent B values good g at 2 and good h at 2. The edges that are omitted
from the graph indicate that an agent has no value whatsoever for the good
(e.g., agent A has 0 value for good h).

First, we find a welfare-maximizing allocation. There are two. Agent A
can be allocated f , and B can be allocated g; or agent A can be allocated g,
and B can be allocated h. Let’s proceed with the first of these allocations,
which is colored in red in the figure. What are supporting prices? Well, since
h is not allocated, it is necessarily priced at 0. But what about f and g?

Since h is priced at 0, agent B could achieve utility 1 if her allocation were
h instead of g. As a result, the price of g is upper bounded by 1: her value
of 2 less a price such that her utility is guaranteed to be at least 1. On the
other hand, the maximum utility that agent A can achieve is 1, when the price
of f is 0. This implies that the price of good g is also upper bounded by 1,
because otherwise, A would prefer g to f . Therefore, good g must be priced
at 1, and consequently, good f must be priced at 0. The unique set of prices
that support this allocation are (0, 1, 0), for goods f , g, and h, respectively.

As this problem is symmetric, these competitive equilibrium prices also
support the other welfare-maximizing allocation, in which agent A is instead
allocated good g and agent B is allocated good h.

2 Constrained Optimization

Mathematical programming is a means of formulating and solving a
form of decision problem called a constrained optimization problem.

Common examples include portfolio optimization: allocate funds to
stocks in a diversified manner so as to maximize profit while respecting risk
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limitations; job scheduling: complete all tasks in the minimum amount of
time, subject to the constraint that only some machines can complete some
jobs; and course scheduling: complete all course requirements within four
years, subject to the constraint that only some courses satisfy the various
requirements and not all courses are offered each semester—not to mention
that some course time slots conflict!

Two other examples, in more detail, are:

• Maximizing profit with budget constraints: Imagine a factory that can
produce two products, each of which accrue some revenue. Each also
requires a certain amount of raw materials and a certain amount of labor,
all of which comes with a cost. The decision problem is to allocate the
raw materials and labor to the production of the two products so as to
maximize profit: i.e., revenue minus cost.

• Diet Problem: The FDA recommends a certain amount of nutrient intake
(proteins, fibers, vitamins, etc.) per day, but at the same time, it also rec-
ommends a maximal caloric intake (e.g., 2000). Moreover, some people
have allergies. The decision problem is to recommend a diet that meets
the FDA requirements (the lower bounds on nutrient intake and the upper
bound on caloric intake), while ensuring that no allergic reactions ensue.

All of these problems are characterized by an objective, such as profit
maximization, and constraints, such as adhering to a budget. The constraints
define the space of feasible solutions to the problem.

When the objective function and the constraints are all linear, a con-
strained optimization problem is called a linear program. In today’s lecture,
we formulate the problem of solving for a competitive equilibrium in unit
demand markets as a linear program.

3 Linear Programming Duality

A linear program is characterized by an objective function and constraints.
Here is (something close to) the standard form of a linear program:

max
x∈Rn

c · x (1)

subject to Ax ≤ b (2)

x ≥ 0 (3)

where

• x is the vector of (primal) decision variables

• c is the vector of coefficients for the objective function

• the inequalities Ax ≤ b represent the constraints on the variables
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Linear programming is a powerful solution technique because it is capable of
modeling many many problems, and it is solvable in polynomial time.

For every so-called primal linear program of the above form, there is a
corresponding dual linear program of the following form:

min
y∈Rm

b · y (4)

subject to ATy ≥ c (5)

y ≥ 0 (6)

where

• y is the vector of decision variables

• b is the vector of coefficients for the objective function

• the inequalities ATy ≤ c represent the constraints on the dual variables

The dual is constructed by associating a dual variable with every constraint in
the primal and a dual constraint with every variable in the primal.

N.B. The dual of the dual is again the primal.
One straightforward observation about the primal and the dual is called

weak duality: For all feasible solutions x, y, to the primal and the dual,
respectively, c · x ≤ b · y.

Proof.

Ax ≤ b ⇒ yT(Ax) ≤ yTb = b · y (7)

ATy ≥ c ⇒ xT(ATy) ≥ xTc = c · x (8)

But now, since yT(Ax) is a vector, it holds that yT(Ax) = (yT(Ax))T =

(Ax)Ty = xT(ATy). Therefore, c · x ≤ xT(ATy) = yT(Ax) ≤ b · y.
In other words, the value of the primal is upper bounded by the value

of the dual. In fact, a much stronger1 property holds, called strong duality. 1 and harder to prove

Strong duality states that the value of the primal and the dual are in fact
equal! This result is both striking and foundational. It is usually attributed
to John von Neumann, who established the result in his study of zero-sum
games, but Leonid Kantorovich and George Dantzig both also played a key
role in the development of the theory of linear duality.

Together, strong duality and our weak duality proof imply the following:

c · x∗ = y∗ · (Ax∗) = b · y∗

Rearranging this equation yields an optimality condition known as com-
plementary slackness:

• y∗j (b − Ax∗)j = 0, for all j ∈ [m]

• x∗i (ATy∗ − c)i = 0, for all i ∈ [n]
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In words, complementary slackness states that, for each primal constraint,
if the optimal value of the dual variable is positive, then the constraint is
tight (i.e., (Ax∗)j = bj) Alternatively, if the constraint is not tight, then the
optimal value of the dual variable is necessarily 0. And likewise for each dual
constraint and primal variable.

4 Solving Unit Demand Markets via a Primal and a Dual

We now return to our study of unit demand markets. In particular, we seek
a method for computing a competitive equilibrium of a unit demand market.

Following Negishi’s method, our first goal is to solve for a welfare-
maximizing allocation in a unit demand market using linear programming.

The following mathematical program solves this problem:

max
X∈{0,1}n×m ∑

i∈[n]
∑

j∈[m]

vijxij (9)

subject to ∑
j∈[m]

xij ≤ 1 ∀i ∈ [n] (10)

∑
i∈[n]

xij ≤ 1 ∀j ∈ [m] (11)

This formulation has a key difficulty, however, namely, that each xij ∈
{0, 1}. That is, each such variable is an integer. The reason this presents a
problem is that integer linear programming is NP-hard, so it is not believed to
be solvable in polynomial time.

But do not despair! We already noted that maximum weight bipartite
matching, a problem of which our problem is an instance, is solvable in
polynomial time. Correspondingly, it turns out that the integer constraints in
this particular problem can be relaxed to non-negativity constraints, so that
the following is an equivalent problem formulation:

max
X∈Rn×m ∑

i∈[n]
∑

j∈[m]

vijxij (12)

subject to ∑
j∈[m]

xij ≤ 1 ∀i ∈ [n] (13)

∑
i∈[n]

xij ≤ 1 ∀j ∈ [m] (14)

xij ≥ 0 ∀i ∈ [n], j ∈ [m] (15)

This latter problem formulation is indeed a linear program, and as such,
can be solved in polynomial time. We thus have a method of solving for a
welfare-maximizing allocation in a unit demand market in polynomial time.

We now turn our attention to the dual of this linear program. Following the
formulaic manner of constructing a dual yields:

min
y∈Rn ,z∈Rm ∑

i∈[n]
1yi + ∑

j∈[m]

1zj (16)
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subject to yi + zj ≥ vij ∀i ∈ [n], ∀j ∈ [m] (17)

yi, zj ≥ 0 ∀i ∈ [n], j ∈ [m] (18)

A typical linear programming solver outputs a solution not only to the
primal, but to the dual as well. We ran such a solver on the market shown
in Figure 2, and obtained one of the two welfare-maximizing allocations,
together with the following solution to the dual: y = (1, 1) and z = (0, 1, 0).
Do these number look familiar?

They should. The variable z corresponds to the prices in the market. What
about the variable y? Plugging in p for z and rearranging the key constraint
yields: yi ≥ vij − pj. The right-hand-side of this equation looks like quasi-
linear utility. Indeed, yi is something like utility. It is not quite utility, but
rather, it is called indirect utility. We thus restate the dual as follows:

min
u∈Rn ,p∈Rm ∑

i∈[n]
1ui + ∑

j∈[m]

1pj (19)

subject to ui + pj ≥ vij ∀i ∈ [n], ∀j ∈ [m] (20)

ui, pj ≥ 0 ∀i ∈ [n], j ∈ [m] (21)

It remains to argue that the solution (X∗, p∗) to this primal and dual is
indeed a competitive equilibrium for a unit-demand market. Feasibility is
embedded into the primal program, so it is certainly satisfied. Walras’ law is
also satisfied; it is precisely complementary slackness. It thus remains only to
argue that the agent stability condition holds. But this condition is precisely
the key dual constraint: for all agents i ∈ [n], i’s utility is at least that of the
utility it could achieve if it were instead allocated any other good j ∈ [m]:
i.e., ui ≥ vij − pj, for all i ∈ [n] and j ∈ [m].
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