
CSCI1440/2440, Fall 2025 Lab 3: Reinforcement Learning & Collusion

1 Introduction

Reinforcement learning (RL) is a machine learning paradigm in which an agent learns the best actions
to play through repeated experience. RL is at the heart of many cutting-edge AI game-playing techniques.
For example, TDGammon and AlphaZero both used RL techniques to outperform human players (as well as
other top computer algorithms) at backgammon, chess, go, and shogi, all of which are highly complicated
games which computer scientists struggled to conquer before the advent of RL.

The purpose of this lab is to provide a brief introduction to reinforcement learning. RL algorithms abound;
you will be implementing one of the most straightforward, called Q-learning. You will simulate this algorithm
in two environments: the first is a repeated two-player, two-action game called Chicken, and the second is a
market game. The goal of the first half of this lab is to stress the importance of representation, while in the
second part, you will observe that Q-learners can learn collusive, rather than Nash equilibrium, behavior.

2 Setup

You can find the stencil code for Lab 3 here. Once everything this lab is set up correctly, you should have a
project with files for nine Python classes:

• basic_chicken_agent.py

• lastmove_chicken_ql.py

• lookback_chicken_ql.py

• my_agent.py*
• q_learning.py*
• i_fixed_policy.py

• uniform_policy.py

• chicken_env.py

• game.py

The star annotations indicate which files you will edit during this lab. The others are purely support code
and/or already-implemented opponent bots for the simulations.

Please be sure to read the README.md. Here is an abridged version of the setup guide described in there:

1. Clone the repository with the command
git clone https://github.com/brown-agt/lab-stencils.git

2. Create a python virtual environment and activate it. Be sure to use python 3.10 or higher.
3. Run pip install -r requirements.txt

3 Markov Decision Processes

RL algorithms are designed to operate in environments called Markov Decision Processes (MDPs), which
are characterized by:

1. S: the set of states
2. A: the set of actions
3. T (s, a, s′): a transition function describing the probability of going from state s to s′ via action a
4. R(s, a, s′): the reward for taking action a at state s and ending up at state s′

5. an initial state, or a probability distribution over initial states

In general, the transition function could depend on all past states and actions. When it instead depends

1

https://en.wikipedia.org/wiki/TD-Gammon
https://en.wikipedia.org/wiki/AlphaZero
https://github.com/brown-agt/lab-stencils.git

CSCI1440/2440, Fall 2025 Lab 3: Reinforcement Learning & Collusion

only on a trajectory of length k ≤ t, i.e., when T (s0, a0, . . . , st−1, at−1, st) = T (st−k, at−k, . . . , st−1, at−1, st),
for all times t, it is called k-Markov. In particular, the transition function T (s0, a0, . . . , st−1, at−1, st) =
T (st−1, at−1, st) is 1-Markov. Note also that the transition function of an MDP is usually also assumed
to be stationary, which in the 1-Markov case means T (st, at, s) = T (st+r, at+r, s), whenever st = st+r and
at = at+r, for all states st, st+r, s ∈ S, actions at, at+r, and times r ≥ t.

Example: Here is an example of a Markov Decision Process:

q1

q2 q3

q4 q5

J (5)

K (−1)

J,K (0)
J,K (100)

J,K (0)J,K (0)

1. S = {q1, q2, q3, q4, q5}, with initial state q1
2. A = {J,K}
3. T : All transitions are deterministic, and are represented in the diagram. (E.g., if you start at state q1

and take action J , you will end up at state q2.)
4. R: The rewards corresponding to each transition are depicted in parentheses, next to the relevant

action. (E.g., R(q1, J, q2) = 5)

A policy in an MDP is a function π : S → A from states to actions. An optimal policy is one that selects
an optimal action at all states. Try to figure out the optimal policy in this sample MDP, and then read on.

At state q1, action J earns you an immediate reward of 5, while action K earns you an immediate reward
of −1. However, after taking your first action and transitioning to the next state (either q2 or q3), you will
earn 100 if you had chosen K, compared to 0, if you had chosen J . Therefore, the optimal choice at q1 is K.

4 Part I: Q-Learning

In Part I of this lab, you will implement Q-learning.

4.1 The Algorithm

In this section, we introduce you to Q-learning, a classic reinforcement learning algorithm.

The goal of RL is to learn an optimal policy in an MDP from simulated experience, without prior knowledge of
either the transitions or the rewards. In their most basic form, these algorithms learn a Q-table of dimension
|S| × |A|, which stores the long-term expected return of choosing action a in state s, for all s ∈ S and a ∈ A.

The Q-table can be initialized arbitrarily.1 Then each time the agent transitions from state s to s′ via action

1Initializations closer to the expected long-term rewards lead to faster convergence.

2

CSCI1440/2440, Fall 2025 Lab 3: Reinforcement Learning & Collusion

a and earns reward r, the Q-table is updated.

Q-learning updates the Q-value at the current state-action pair (s, a) using this rule:

Q(s, a) = α(r + γmax
a′

Q(s′, a′)) + (1− α)Q(s, a) .

Here, α ∈ [0, 1] is a learning rate, which controls how fast new information is incorporated into Q-values;
and γ ∈ [0, 1) is discount factor, which describes how much the agent cares about its present vs. its future
rewards—a value close to 1 means it values future rewards nearly as much as present rewards; a value close
to 0 (which is unusual) means it values future rewards much much less than present rewards.

Question: Starting from an initial Q-table of all zeroes, apply the Q-learning update rule to our sample
MDP a few times to see if/how it learns the optimal policy. Assume an initial state of q1, a learning rate of
0.5 and a discount factor of 0.9.

An RL algorithm can learn online or offline. To learn offline means to learn while simulating play, without
actually earning any rewards. If an agent is learning offline, there are often distinct training and testing
phases. During the former, the agent learns in simulated play, without accruing any rewards; during the
latter, it “really” plays, meaning it does accrue rewards. If an agent is learning offline, it is free to explore its
environment to its heart’s content (i.e., to play off-policy), without risk: i.e., without foregoing any rewards,
since its actions are simulated anyway.

To learn online means to learn while “really” playing: i.e., to learn and accrue rewards simultaneously. If an
agent is learning online, it probably prefers to play on-policy, meaning according to its latest and greatest
policy, so that it does not forego too many rewards. The trade-off between playing according to the latest
and the greatest vs. favoring exploring as-yet-unexplored parts of the environment in the hopes of discovering
an even better policy is called the exploration–exploitation trade-off.

To play well, given its current knowledge—to exploit—the agent can choose an action with the highest
expected long-term rewards, as recorded in the current Q table. To continue learning—to explore—the
agent can occasionally chooses an action at random, with exploration rate ϵ ∈ [0, 1].

The pseudocode in Table 1 outlines Q-learning algorithm in detail.

q learning(MDP, γ)
Inputs discount factor γ, exploration policy
Output action-value function Q∗

Initialize Q = 0, α according to schedule

repeat

1. initialize s, a
2. while s is non-terminal do

(a) take action a
(b) observe reward r, next state s′

(c) Q(s, a) = Q(s, a) + α[r + γmaxa′ Q(s′, a′)−Q(s, a)]
(d) choose action a′ according to the exploration policy
(e) s = s′, a = a′

(f) decay α according to schedule
forever

Table 1: Q-Learning: Off-policy reinforcement learning.

3

CSCI1440/2440, Fall 2025 Lab 3: Reinforcement Learning & Collusion

4.2 An Implementation

To implement Q-learning, you should navigate to q_learning.py. This class contains some important
instance variables:

• self.q is your Q-table. It has dimensions [self.num_possible_states][self.num_possible_actions].
• self.num_possible_states is the size of the state space.
• self.num_possible_actions is the size of the action space.
• self.learning_rate is the learning rate hyperparameter (α).
• self.discount_factor is the discount factor hyperparameter (γ).
• self.exploration_rate is the exploration rate hyperparameter (ϵ).
• self.training_mode is a boolean indicating whether your agent is in “training mode” or not. In
training mode, your agent will play a exploration-exploitation strategy, but in testing or “competition”
mode, your agent will play a learned policy based on its Q-table.

• self.training_policy is a fixed policy that your agent will play with probability self.exploration_rate
when choosing the next action during exploration-exploitation. It is an object implementing the
IFixedPolicy interface, which has one method, get_move(), that produces an action, given a state.
By default, your agents will play uniformly randomly, but you are free to alter this policy, if you can
envision a better one for training.

• self.s is your current state, representing the variable s in the Q-learning algorithm.
• self.a is your current action, representing the variable a in the Q-learning algorithm.

Task: Implement the following methods in q_learning.py:

• update_rule()

• choose_next_move()

(Look for TODO in the code.)

When this task is complete, you will have implemented a Q-learning agent. But, the success or failure of
a reinforcement learning agent is determined by more than the algorithm alone; it depends greatly on the
state-space representation. If you represent a repeated game as an MDP in a smart way, you’ll see great
results, but otherwise Q-learning won’t be effective, no matter how many rounds you train for. In what
follows, you will explore a few state-space representations so you can observe this phenomenon yourself.

5 Part II: State-Space Representations

One of the key challenges in reinforcement learning is the design of an effective state-space representation.
Take the game of chess, for example. There are too many valid configurations of pieces on the board to
represent each one as its own state.2 Consequently, we usually resort to a feature representation, which
summarizes the information about a state that is most relevant to decision making. In chess, features might
include the total value of black pieces, the total value of white pieces, etc.

Similarly, in order to implement RL agents that play repeated normal-form games, the first step is to morph
the game into an MDP by choosing a state-space representation. For example, your agent can choose as the
state its last action, its opponents’ last action, both agents’ last actions, its own past two actions and its
opponents’ past four actions, etc. This choice can be difficult, because the history in a repeated game is in
general unbounded, while MDPs with finite state (and action) spaces are usually much easier to solve.

In Part II of this lab, you will experiment with several different state-space representations for Q-learning
agents that play a simple repeated game called Chicken.

2Claude Shannon famously estimated that there are at least 10120 valid board configurations in chess.

4

CSCI1440/2440, Fall 2025 Lab 3: Reinforcement Learning & Collusion

5.1 The Game of Chicken

Chicken, like the Prisoners’ Dilemma, is a symmetric two-player, two-action, non-zero-sum game.

The premise is that two daredevil stuntmen are trying to impress a casting director in order to be chosen
for Fast and Furious 12. The two stuntmen are driving in opposite directions on the road and are about
to collide, head-on. Each has the option to Swerve or Continue going straight. If both players continue,
they will crash, and receive a massive negative payoff in the form of injuries. If they both swerve, neither is
rewarded with the part, as the casting director is left unimpressed. But if one swerves and one continues,
the swerving player loses face, while the player who continued is rewarded handsomely.

Chicken is defined by the following payoff matrix:

S C
S 0, 0 -1, 1
C 1, -1 -5, -5

The only way to win is to continue while the other player swerves. But are you willing to take the risk?

5.2 State-Space Representations of Chicken

A Q-learning agent is incomplete without a state-space representation. Indeed one more method is needed in
your implementation, namely determine_state(), in which you will define your state-space representation.
This method can use all the information available to the agent about the past rounds of the game. to
determine the MDP state the game is currently in.

We have implemented two sample state-space representations for you. Your next task is to create two sample
Q-learning Chicken agents by combining your Q-learning code and our state-space representations. This
exercise will serve to simultaneously verify the correctness of your implementation, and to illustrate the
importance of a robust state-space representation. After training our sample agents and observing their
performance, you will design your own agent for Chicken, meaning your own state-space representation for
this game, and then you will train it and test its performance. How well can your agent do?

You will be training agents that use our sample state-space representations against a very simple agent located
in basic_chicken_agent.py. It simply plays actions [1, 0, 0] in sequence, repeatedly. Can Q-learning pick
up on this pattern and play a perfect response? As you have probably surmised by now, the answer depends
on the state-space representation!

5.2.1 lastmove chicken ql.py: An Insufficient State Space

Navigate to lastmove_chicken_ql.py. Here, you will find a basic Chicken-playing Q-learning agent, with
a state space of size 2, with each state corresponding only to the opponent’s last action. If the opponent
played 0, the state is 0, while if the opponent played 1, the state is 1.

Task: Run this agent. Doing so will launch a 20,000-round training phase against the aforementioned
BasicChickenAgent. Then, having learned its policy, it will turn off “training mode” and play an additional
300 “real” rounds against the opponent. Finally, it will print out the results: your agent’s average reward
per round, and a list of your agent’s per-round rewards. If you implemented Q-learning correctly, the agent
should have achieved an average reward of about 0, alternating between rewards of 0, 1, and -1.

Although the agent plays imperfectly, it does learn to avoid the (CONTINUE, CONTINUE) outcome—a reward

5

CSCI1440/2440, Fall 2025 Lab 3: Reinforcement Learning & Collusion

of -5.0 should not occur. Thus, it avoids a large negative reward. So it is doing something right, but it wasn’t
quite able to learn the entirety of the other agent’s strategy. How can we improve its performance?

Note: If your implementation works correctly, you will notice that your agent performs poorly during the
training phase, but plays better during the testing phase, once it begins playing its learned policy. This is
because Q-learning is training off-policy. You should bear this in mind later, when we contrast off-policy
Q-learning with the on-policy SARSA algorithm.

5.2.2 lookback chicken ql.py: A Sufficient State Space

Navigate to lookback_chicken_ql.py. You will notice a very similar setup in this agent, the only salient
difference being determine_state(). States are still represented as integers, but each state now represents
a combination of the opponent’s past two actions. Is this enough information to predict the agent’s next
action, and generate a best response?

Task: Run this agent. It will do the same thing as the last agent, printing out the results at the end. You
will be able to see a difference here; your agent should have learned to play perfectly, averaging about 1/3
reward per round and alternating between rewards of 1, −1, and 1 most of the time.

As you can see, even a small difference in the state space can lead to a large difference in performance between
our two sample agents, all of which is highly dependent on the behavior of the opponent.

Question: Why was the second state-space representation sufficient to produce a best response to the
opponent’s strategy, whereas the first one was not? In other words, why was it sufficient for your agent to
know this opponent’s last 2 actions in order to play perfectly, while knowing ust 1 action was not enough?

5.2.3 Implementing your Own State-Space Representation

Navigate to my_agent.py.

Task: Your next task is to devise your own state-space representation of the game of Chicken as an MDP,
in order to maximize your reward against a mystery agent. Your opponent’s strategy this time will be
more intricate than the strategies faced by the sample agents, so you will have to design a more robust
representation, in order to account for its possible behaviors.

Your representation can be basic and low-level, incorporating only the previous (k) state(s) and action(s) of
your opponent. However, this representation explodes exponentially, so is impractical. You might do better
to summarize the history of the game to determine your state, including your own or your opponent’s past
action, your past states, and your past rewards, into a feature vector representation of the state.

N.B. One of the reasons for the massive success of deep RL is its ability to automate feature extraction.

Important: After you choose a state-space representation, be sure to edit the NUM_POSSIBLE_STATES con-
stant to reflect the number of states in your representation. The determine_state() method should then
return a value in [0, NUM_POSSIBLE_STATES).

Run your agent. It will do the same thing as the previous simulations, though it will face the more complicated
“mystery” opponent rather than the one with the basic alternating strategy.

How did you do? If you don’t do well, do not despair! It can be very difficult to achieve positive reward
against an unknown opponent in Chicken, so achieving even a small negative reward is itself impressive. You
should aim for at least about −0.05, on average across all 300 rounds.

Try out a few different ideas, but feel free to move on when you feel your agent is performing as well as it

6

CSCI1440/2440, Fall 2025 Lab 3: Reinforcement Learning & Collusion

can, in light of the time constraints imposed by the lab.

5.2.4 Discussion: Strategy Considerations

Please read this section, and discuss its implications with your partner.

Since the success of your strategy hinges on your state-space/MDP representation of a repeated normal-form
game, the key to creating a successful agent will be a good choice of what information to incorporate into
your states. For example, what your opponent played during the last round may be more relevant than what
they played 10 rounds ago. But by including too many of their past actions, your agent might pick up on
a spurious pattern in their behavior, whereas by including too few actions, you agent might fail to pick up
on an actual pattern (see LastMoveChicken, for example). Additionally, including more actions causes the
state space to grow, which requires longer training times.

There are plenty of further strategic considerations. When multiple agents are learning simultaneously
in a repeated game, their behavior is inherently correlated. So an important additional consideration is
whether your opponent’s actions seem to depend on your previous actions, or whether they seem to be acting
independently. Once again, the more robust your state-space representation, meaning the more relevant past
behaviors—both yours and your opponent’s—it can represent, the better your performance should be.

6 Class Competition

Having now implemented more advanced learning strategies, we will once again play a total of 100 rounds
of the game of Chicken—50 rounds as player 1 and 50 rounds as player 2. However, this time, instead of
competing against TA bots, your bots will face off against those of other students.

You are free to use any strategy you like in this competition, whether inspired by reinforcement learning or
otherwise. However, to keep the competition engaging, your strategy should not be constant, as that would
obviate any need for strategic play.

To further encourage adaptive approaches, we will also be introducing four unique, exploitable strategies into
the competition!

7 Part III: A Market Game

In this third and final part of the lab, you will again experiment with Q-learning agents, but this time by
simulating a market game.

The market game involves n (discrete) sellers, each selling a unique product, and a continuum of buyers.
Seller i’s product is characterized by a quality factor ai. A further outside option (i.e., a good on offer outside
this market) is characterized by a0. Each seller chooses a price pi from a set of discrete prices, and the demand
qi for seller i’s product depends on all the sellers’ prices via the following logit demand equation:3

qi =
exp

(
ai−pi

µ

)
∑n

j=1 exp
(

aj−pj

µ

)
+ exp

(
a0

µ

) (1)

3Here, µ is a horizontal differentiation parameter, meant to capture product characteristics other than quality.

7

CSCI1440/2440, Fall 2025 Lab 3: Reinforcement Learning & Collusion

Each seller’s goal is to set its prices so as to maximize its profits πi, in light of its competition, where
πi = qi(pi − c), for some cost c > 0.4

With this market game in mind, the simulation proceeds as follows: at each time step,

1. Each seller i posts a price pi from a set of m discrete prices.
2. Each seller then earns a profit based on its deterministic demand qi (Equation 1).
3. The sellers all observe one another’s prices, but there is no direct communication among them.

There are two prices of note in this market game, the Bertrand equilibrium price,5 and the monopoly price.
The Bertrand equilibrium price is the cost c, as all sellers compete to drive the price down as low as
possible. In contrast, the monopoly price is the price that would be charged in a monopoly, when only one
seller controls the entire market.

One key question is whether reinforcement learning agents, such as Q-learners, learn equilibrium behavior in
this and other market games. You will investigate this question presently assuming exactly two sellers.

Task 1. In the file collusion.py, implement the determine_state function. Experiment with various
choices for the state-space representation. You can try no state at all, just your agent’s past price, just the
opponent’s past price, or both of your past prices. (We do not recommend you go much bigger than this here
in lab, as it may take a while for the agents’ behavior to converge, if it even converges at all!)

When you run your code, it should output plots like those depicted in Figure 1, which demonstrate collusion.
Figure 1 shows the outcome of 1 million iterations of two Q-learners using the default parameters.

In Figure 1a, the prices are above the Bertrand equilibrium level, while Figure 1b demonstrates another
characteristic of collusion: If the first seller deviates from the cartel price to attract more demand, the second
seller follows suit, leading to a price war, before the two resume their collusive behavior.

(a) Sellers’ prices. (b) Price war after seller 1’s deviation.

Figure 1: Outcome of two Q-learners after 1 million iterations.

Task 2. Your next task is to investigate the robustness of the collusive behavior you just observed by ex-
perimenting with various parameter settings. Try adjusting self.learning_rate, self.discount_factor,
the exploration rate self.beta (which decays exponentially transitioning the policy from off- to on-policy),
self.max_steps (the number of time steps), and the parameters of the market game itself (e.g., µ and c).

Feel free to play around with the parameter settings, namely the learning rate alpha, the exploration rate
beta, which decays exponentially transitioning the policy from off- to on-policy, self.max.steps, the number
of iterations, mu, etc.

4For simplicity, we assume all sellers incur the same cost.
5A model of competition between two sellers competing on price is named for François Bertrand.

8

	Introduction
	Setup
	Markov Decision Processes
	Part I: Q-Learning
	The Algorithm
	An Implementation

	Part II: State-Space Representations
	The Game of Chicken
	State-Space Representations of Chicken
	lastmove_chicken_ql.py: An Insufficient State Space
	lookback_chicken_ql.py: A Sufficient State Space
	Implementing your Own State-Space Representation
	Discussion: Strategy Considerations

	Class Competition
	Part III: A Market Game

