
CS1440/2440, Fall 2025 Lab 2: Finite State Machines and Games of Incomplete Information

1 Introduction

In this lab, you will be implementing agent strategies for the game Battle of the Sexes. You will be playing
both a complete-information and an incomplete-information version of the game. The agent strategies will
take the form of finite state machines.

2 Setup

The stencil code for Lab 2 is available here. It includes six Python files:

• bos_competition_agent.py*
• bos_finite_state_agent1.py*
• bos_finite_state_agent2.py*
• bos_punitive.py

• bos_reluctant.py

• bosii_competition_agent.py*

The star annotations indicate which files you will edit during this lab. The others are purely support code
and/or already-implemented opponent bots for the simulations.

Please be sure to read the README.md. Here is an abridged version of the setup guide described there:

1. Clone the repository with the command
git clone https://github.com/brown-agt/lab-stencils.git

2. Create a python virtual environment and activate it. Be sure to use python 3.10 or higher.
3. Run pip install -r requirements.txt

3 Battle of the Sexes

Battle of the Sexes is another classic game theory problem, just like the Prisoners’ Dilemma. In this problem,
Alice and Bob made plans to go to either a concert or a lecture together, but they both forgot which one
they agreed on, and cannot communicate with each other beforehand. Instead, they each must choose one
to go to, and hope the other one also shows up. They are both unhappy (i.e., zero payoffs) if they go to
different events, and are both happy if they go to the same event. However, Alice prefers the concert to the
lecture, and Bob prefers the lecture to the concert.

The payoff matrix of the game as is follows (Alice is the row player):

C L
C 7, 3 0, 0
L 0, 0 3, 7

An interesting feature of the game is the presence of two cooperative outcomes, each one favoring one of the
players. The players both receive a positive payoff if they choose the same event, but how can they figure
out whose preferred event they should go to?

Question: How would you play this game against an opponent whose strategy is unknown to you?

1

https://github.com/brown-agt/lab02-stencil

CS1440/2440, Fall 2025 Lab 2: Finite State Machines and Games of Incomplete Information

4 Finite State Machines

Finite state machines (FSMs) can be used to model strategies in repeated normal-form games. Specifically,
they maintain a state, which captures selected aspects of the history of the game, based on which the agent
chooses its next action. Formally, in the context of a repeated game, a FSM consists of the following:

• A set of states with a select initial state.
• A function that assigns an action to every state.
• Rules that govern the transition from one state to the next based on the outcome (i.e., action profile)

of one round of the game.

An example of one such strategy for Alice in the Battle of the Sexes is represented by this machine. Here,
Alice begins by going to the concert, and continues to do so as long as Bob also goes. However, if Bob attends
the lecture, Alice’s next move will be to go to the lecture, again and again, for as long as Bob also goes. This
strategy could be described as a “follower” strategy, as Alice always plays Bob’s last move.

C
(initial) L

(L, C)

(C, L)

(C, C) (L, L)

Question: Against which types of players would this be a strong strategy? Against which types of players
would this be a weak strategy?

4.1 Finite State Machine Strategies

Below are some additional examples of FSMs (i.e., strategies) for Battle of the Sexes. Think about the
strengths and weaknesses of each one, and which elements you may want to incorporate into your own
strategy. Your strategy can be as simple or as complicated as you want. Any idea is worth trying!

N.B. All of the strategies below are for the row player. Keep in mind that you may not be the row player in
the simulation, but since the game is symmetric, you can just substitute the moves with their opposites.

The states in these diagrams are labelled with Alice’s action, and the transitions, with Bob’s (and Alice’s).

• “Uncompromising”: Alice disregards Bob’s wishes and unrelentingly and unrepentantly always goes
to the concert. He can join her if he wants.

C
(initial)

Any

• “Reluctant to Compromise”: Alice always attends the concert, except when Bob went to the lecture
three times in a row. After attending the lecture once, Alice goes straight back to the concert.

2

CS1440/2440, Fall 2025 Lab 2: Finite State Machines and Games of Incomplete Information

C
(initial)

C C

L

(C, C)

(C, L)

(C, C)

(C, L)(C, L)(C, L)

(C, C)

Any

(C, L)

• “Punitive”: Alice goes to the concert as long as Bob does. Once Bob breaks this compromise, Alice
compromises by going to the lecture once. However, if Bob breaks the compromise 3 times, Alice
retaliates by going to the concert forever after.

C
(initial) L C L C

(C, C)

(C, L) Any

(C, C)

(C, L) Any

Any

Question: What are some advantages of using FSMs over the strategies from Lab 1? What are some
disadvantages?

4.2 Simulations

In this lab, you will be implementing strategies as FSMs. Your goal will be to beat several sample agents,
which are also FSMs. The games will last 100 rounds.

You will play as Bob. However, to generalize the moves to both players, instead of CONCERT and LECTURE,
your available moves will be STUBBORN (for Bob this means going to the lecture) and COMPROMISE (for Bob
this means going to the concert). In other words, the game you are now playing looks like this:

S (Lecture) C (Concert)
S (Concert) 0, 0 7, 3
C (Lecture) 3, 7 0, 0

Take a look at bos_reluctant.py and bos_punitive.py, which, respectively, implement the “reluctant to
compromise” and “punitive” strategies from Section 4.1.

To counter the “reluctant to compromise” strategy, implement an effective response in bos_finite_state_agent1.py.
To counter the “punitive” strategy, implement an effective response in bos_finite_state_agent2.py.

Hint: Consider an objective such as one of these two when designing your strategies:

• Maximize your agent’s absolute utility: i.e., aim for the highest possible payoff.
• Maximize your agent’s utility relative to your opponent’s, even if that ultimately means making

both agents worse off.

Task: To implement your strategies, fill in the following two methods in these files:

3

CS1440/2440, Fall 2025 Lab 2: Finite State Machines and Games of Incomplete Information

• get_action: Return either self.STUBBORN or self.COMPROMISE, depending on the current state of the
game, as stored in the instance variable self.curr_state. Note that self.curr_state is initialized
to 0, which represents your initial state.

• update: Return the next state, based on your current state and the actions taken by each player in the
previous round of the game, and update self.curr_state to reflect the new state of the game.

You are free to make your strategy as simple or complicated as you want, so long as it is a FSM that beats
the sample agents. There are many possible ways to beat these simple strategies. For fun, you might try to
see just how high of payoffs you can achieve!

4.3 Competition

Now that you have designed a FSM that has defeated the sample agents, whose strategies were known to
you, you will design a FSM to be paired up against a classmate’s agent for another 100 rounds.

You will not know whether you are Alice or Bob, but this should not matter, since the game as we defined
it, in terms of STUBBORN and COMPROMISE, is symmetric.

Task: For the competition, just as for the simulations, you job is to write the get_action and update

methods. You should do this in bos_competition_agent.py. Keep in mind that this task is notably harder
than the last, since you do not know the opponent’s strategy. Be creative. Try to think about how your
classmates’ agents may play, and from there, think about ways in which you might respond.

Task: Test your agent before submitting by running your agent file, bos_competition_agent.py. Doing so
will launch a 1000-round local competition in which your agent competes against itself. You should run this
test to make sure that your agent will not crash in the class competition.

5 Battle of the Sexes: Incomplete Information

Next, we’ll explore a variation of Battle of the Sexes in which Alice has incomplete information. In
particular, Alice does not know whether Bob is in a good mood or a bad mood. If Bob is in a good mood,
he would like to see Alice, and the original payoffs are maintained. But if Bob is in a bad mood, he receives
higher payoffs from avoiding Alice rather than from meeting her. Let’s assume Bob is in a good mood with
probability 2/3; this outcome is represented by the payoff matrix on the left. Bob is then in a bad mood with
probability 1/3; this outcome is represented by the payoff matrix on the right.

P = 2/3 S (Lecture) C (Concert)
S (Concert) 0, 0 7, 3
C (Lecture) 3, 7 0, 0

P = 1/3 S (Lecture) C (Concert)
S (Concert) 0, 7 7, 0
C (Lecture) 3, 0 0, 3

Note that Alice’s payoffs are not affected by Bob’s mood—she still prefers the concert, and wants to see Bob.
So why should Bob’s mood affect Alice’s strategy? Because Bob’s mood affects how Bob will play, and thus
Alice’s chance of reaching a cooperative state!

Although incomplete-information games are more complicated to analyze than complete-information games,
Fictitious Play, Exponential Weights, and FSMs are all still viable strategies.

In complete-information games, the data collected after each round of play contains all players’ actions and
payoffs. In incomplete-information games, the post-round data also contains the players’ private information,
which in this game means Bob’s mood during that round. That way, Alice can design a strategy based not
only on how Bob acted in the past, but conditioned on whether he is in a good or bad mood, provided she
also predicts his mood.

4

CS1440/2440, Fall 2025 Lab 2: Finite State Machines and Games of Incomplete Information

5.1 Fictitious Play

To use Fictitious Play in Incomplete Information Battle of the Sexes, Alice can keep track of two empirical
probability distributions over Bob’s past actions—one for each of his moods. Call these distributions π̂G and
π̂B . Alice should also keep track of how often Bob was in a good vs. a bad mood. Using this information,
Alice can compute her expected of playing, for example S, as follows:

Ea[S] = Pr(good) [π̂G(S) ua(S,S; good) + π̂G(C) ua(S,C; good)]

+ Pr(bad) [π̂B(S) ua(S,S; bad) + π̂B(S) ua(S,C; bad)]

Then, as usual, she can choose an action that maximizes her payoffs, given the game’s history.

The situation is slightly simpler for Bob, since he knows his mood before he makes a move. But Bob still
must maintain a probability distribution, say ρ̂G, over Alice’s past actions, when Bob was in a good mood;
and likewise, ρ̂B , when he was in a bad mood. With this information in hand, Bob can compute his expected
payoff of playing, for example S, when he is in a good mood as follows:

Eb[S] = ρ̂G(S) ua(S,S; good) + ρ̂G(C) ua(C,S; good)

5.2 Exponential Weights

Similarly, to extend the Exponential Weights strategy to this incomplete-information game, the players should
keep track of two average reward vectors, conditioned on Bob’s mood.

From Alice’s perspective, she can use these average reward vectors, in conjunction with the probability of
each of Bob’s moods, to calculate her expected average reward for each action. She can then use the classic
Exponential Weights formula to construct a probability distribution over her possible actions.

For example, if Alice keeps track her average rewards per action when Bob is in a good mood and a bad
mood in vectors r̂G and r̂B , respectively, then her expected average reward for playing S is:

Ea[S] = Pr(good) r̂G(S) + Pr(bad) r̂B(S)

So her probability distribution over her next action would be calculated as follows via Exponential Weights:

Pr(S) =
eEa[S]

eEa[S] + eEa[C]
Pr(C) =

eEa[C]

eEa[S] + eEa[C]

From Bob’s perspective, he ought to track the same data, but since he knows his mood, he can use the
corresponding average reward vector as usual. Given M ∈ {good,bad},

Pr(S) =
er̂M [S]

er̂M [S] + er̂M [C]
, Pr(C) =

er̂M [C]

er̂M [S] + er̂M [C]

5.3 Finite State Machines

Finally, FSMs should also incorporate Bob’s mood somehow. From Alice’s perspective, she can use his past
moods as part of the state space, just as she previously used his past actions. From Bob’s perspective, he
can incorporate his current mood into the state space.

Here are some possible strategies for Alice, based on our previous ideas for the complete-information game:

5

CS1440/2440, Fall 2025 Lab 2: Finite State Machines and Games of Incomplete Information

• “Uncompromising”: Alice disregards Bob’s wishes and unrelentingly and unrepentantly always goes
to the concert, irrespective of his past moods. He can join her if he wants.

• “Reluctant to Compromise”: Alice always attends the concert, except when Bob was in a bad
mood three times in a row, and correspondingly went to the lecture all three times. After attending the
lecture once, Alice goes straight back to the concert.

• “Punitive”: Alice goes to the concert as long as Bob does. Once Bob breaks this compromise, Alice
will compromise by going to the lecture once, if Bob was in a bad mood. However, if Bob breaks the
compromise 3 times—going to the lecture three times when he was in a good mood—Alice retaliates
by going to the concert forever after.

And here are two altogether different strategies. The first one is for Alice, and the second, for Bob. See if
you can figure out what they are doing.

C
(initial) L

(C, L, bad) or
(C, C, good)

(L, L, bad) or
(L, C, good)

(C, C, bad) or
(C, L, good)

(L, L, good)
or (L,C, bad)

good: C
bad: L

good: L
bad: L

good: C
bad: C

(C, L) or (C, C)

(L, L)

(C, L)

(L, C) or (L, L) (C, C)

(L, C)

6

CS1440/2440, Fall 2025 Lab 2: Finite State Machines and Games of Incomplete Information

5.4 Competition: Incomplete-Information Battle of the Sexes

In this competition, you will be implementing an agent to compete against a classmate for 100 rounds (50
rounds as Alice and 50 rounds as Bob) in Incomplete-Information Battle of the Sexes. The payoff
matrices are depicted at the beginning of Section 5. Note, however, you will not know until it is time to
make your first move whether you are the row player or the column player—you do remain the same player
throughout the entire 50-round games, though.

To participate in the competition, you must write the get_action method of bosii_competition_agent.py,
which returns S or C. Because the information is incomplete, we have provided you with the following helper
methods (imported from bosii_competition_agent.py):

• is_row_player returns true if you are the row player (and thus have incomplete information) and
false if you are the column player.

• get_mood returns your current mood: either self.GOOD_MOOD or self.BAD_MOOD, provided you are the
column player. The mood determines the payoff matrix. If you are the row player, this method returns
None, because your mood does not vary and you do not know the opponent’s mood.

• get_action_history returns a list of the player’s historical actions over all rounds played in the current
matching so far

• get_util_history returns a list of the player’s historical payoffs over all rounds played in the current
matching so far

• get_opp_action_history returns a list of the opponent’s historical actions over all rounds played in
the current matching so far

• get_opp_util_history returns a list of the opponent player’s historical payoffs over all rounds played
in the current matching so far

• get_mood_history returns a list of the column player’s moods over all rounds played in the current
matching so far, if you are the column player or None, if you are the row player.

• get_last_action returns the player’s actions in the last round if a round has been played, and None

otherwise
• get_last_util returns the player’s payoff in the last round if a round has been played, and None

otherwise
• get_opp_last_action returns the opponent’s action in the last round if a round has been played, and
None otherwise

• get_opp_last_util returns the opponent’s payoff in the last round if a round has been played, and
None otherwise

• get_last_mood returns your last mood in the previous round if you are the column player and a round
has been played, and None otherwise

• row_player_calculate_util(row_move, col_move) returns the row player’s hypothetical utility given
action profile (row_move, col_move)

• col_player_calculate_util(row_move, col_move, mood) is analogous, but returns the column player’s
hypothetical utility, and depending on her mood

• col_player_good_mood_prob returns the probability that the column player is in a good mood, which
is useful in expected utility calculations

Because only the column player has two moods, we recommend you separate your strategy into two, one for
the row player, and the other for the column, as follows:

if self.is_row_player:

(your row-player strategy)

else:

my_mood = self.get_mood:

(your column-player strategy)

}

7

CS1440/2440, Fall 2025 Lab 2: Finite State Machines and Games of Incomplete Information

Because this game is asymmetric, your agent will play both roles, roughly equally often.

Task: Test your agent before submitting by running your agent file, bosii_competition_agent.py. Doing
so will launch a 100-round local competition in which your agent competes against itself. You should run
this test to make sure that your agent will not crash in the class competition.

5.5 Testing your Competition Agent Locally

Before participating in the class competition, you can test your agent locally, in a mock competition against a
TA bot. To do so, simply run your competition agent file, bosii_competition_agent.py, in your terminal of
choice. We implemented this functionality so that you can make sure your agent does not crash in competition
mode, thereby making it more likely your agent will run smoothly in the class competition.

The class competition is also launched via bosii_competition_agent.py, using the join_server boolean,
along with the appropriate IP address and port. This latter information will be announced during lab.

A Simulation Details; TLDR

Recall from Lab 1 that at a high-level, the agt server simulates a repeated game tournament as follows:

1. Your agent is paired against another agent (or set of agents, as the game requires) in a round robin.
2. Before each repeated game simulation begins, the agt server calls each agent’s setup method.
3. Then, during each round of the simulation:

(a) agt server requests an action from each agent. Upon receiving this request, each agent calls its
get action method, and then sends its action to agt server.

(b) agt server executes these moves and calculates payoffs.
(c) agt server broadcasts the results back to the agents in a sanitized json report summarizing

the round’s results. (The report is sanitized, as not all information is necessarily broadcast to
all agents.) Upon receipt, your agent’s history is automatically updated with the information it
receives, which it can then retrieve using methods like
self.get util history,
self.get action history, etc..

(d) Once the round has concluded, agt server calls the agent’s update method, which gives it a
chance to update its strategy.

4. After the simulation (i.e., all rounds of the repeated game) conclude, agt server resets the game
history and calls the agents setup methods to allow them to reset for the next simulation.

The calls to the get action method are implemented differently for Fictitious Play and Exponential Weights
agents. For the former, the agt server calls the agent’s predict method, so that it can build its prob-
ability distribution, and then optimize to solicit its next move. For the latter, the agt server calls
calc move probs, and then samples from this distribution to arrive at the agent’s next move.

8

	Introduction
	Setup
	Battle of the Sexes
	Finite State Machines
	Finite State Machine Strategies
	Simulations
	Competition

	Battle of the Sexes: Incomplete Information
	Fictitious Play
	Exponential Weights
	Finite State Machines
	Competition: Incomplete-Information Battle of the Sexes
	Testing your Competition Agent Locally

	Simulation Details; TLDR

