
CS1440/2440, Spring 2025 Lab 6: Bidding Strategies for Simultaneous Auctions, Part 1

1 Introduction

In this lab, you will being your foray into the design of bidding heuristics for combinatorial auctions. A
combinatorial auction is one in which bidders valuations for bundles (i.e., sets) of goods are non-additive.
In particular, a bidder can value a bundle more than the sum of its parts (think a pillow and a pillowcase;
complements), or less than the sum of its parts (think ammonia and bleach; substitutes).

During the next 2 labs, you will be implementing agent bidding strategies for one of the simplest combinatorial
auction designs, simultaneous sealed-bid auctions. Simultaneous auctions are exactly what they sounds
like: parallel auctions in which there are multiple goods to bid on (say m), simultaneously. In a sealed-bid
auction, bidders submit private bids to the auctioneer.

At the start, the server announces the goods up for auction, and sends the agents their values for all bundles
(or access to a function that computes those valuations, if there are too many to enumerate). In a sealed-bid
auction, the server then waits for the agents to submit their bids, before announcing the outcome: i.e., the
allocation and payments.

Auctions are challenging to analyze when goods are sold separately, but bidders’ valuations are combinatorial.
Even when bidders are concerned only with their own winnings (not the other bidders’ winnings), it may not
be possible to describe their valuations using fewer than 2m numbers. Bidding heuristics for simultaneous
auctions try to make sense of all of these numbers using a reasonable (i.e., preferably sub-exponential) number
of calculations, as they search for a vector of bids that yields high utility as often as possible.

Many successful heuristics/strategies employ the following two-tiered architecture:

1. predict: build a model of the highest other-agent bids (i.e., the auctions’ clearing prices)
2. optimize: solve for an (approximately) optimal set of bids, given this model

Over the course of the next two labs, you will be implementing a prediction method that generates so-called
self-confirming prices, and an optimization routine called LocalBid.1 In this lab, you will implement
an optimization routine only; then next time, you will implement a price-prediction algorithm. But before
writing any code, you will develop your intuition about how one might bid in simultaneous second-price
auctions by working through a few examples. These examples involve both complements and substitutes.

2 Setup

You can find and clone the stencil code for Lab 6 here. The stencil code includes:

• marginal_value.py*
• test_marginal_value.py*
• localbid.py*
• sample_valuations.py

The star annotations indicate which files you be editing during this lab. The others are purely support code
for the lab.

Please be sure to read the README.md. Here is an abridged version of the setup guide described in there:

1. Clone the repository with the command
git clone https://github.com/brown-agt/lab06-stencil.git

2. Create a python virtual environment and activate it.

1Michael P. Wellman, Eric Sodomka, & Amy Greenwald. Self-confirming price-prediction strategies for simultaneous one-shot
auctions. Games and Economic Behavior, 102:339–372, 2017.
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3 Marginal Values

You may recall that in a single second-price auction, the equilibrium strategy is for each bidder to bid their
true valuation for the good. Why isn’t this good enough in simultaneous second-price auctions? The reason
is that a bidder does not have merely one valuation for each individual good, but rather many valuations for
each, depending on context: i.e., the other goods in the bidder’s bundle. In other words, a bidder’s valuation
for winning a good is a function of the other goods that bidder also wins.

Example:2 As an example, suppose an agent values a camera and flash together at 500, and either good
alone at 1. Also, suppose these two goods are sold separately in two simultaneous auctions, and that the
highest other-agent bids turn out to be 200 for the camera, and 100 for the flash. If the agent were to
bid only its true, but individual, values (1), it would lose both goods, obtaining utility of 0 rather than
500 − 200 − 100 = 200. This bidding strategy is suboptimal: the agent fails to win goods it wishes it had
won—and which it could have won had it bid otherwise: e.g., 500 on both goods.

Example: Now suppose an agent values a Canon AE-1 at 300 and a Canon A-1 at 200, but values both
cameras together at only 400. Also, suppose these two goods are sold separately in two simultaneous auctions,
and that the highest other-agent bids turn out to be 275 for the AE-1 and 175 for the A-1. If the agent were
to bid its true, but individual, values, it would win both goods, obtaining utility of 400 − 450 = −50. This
bidding strategy is again suboptimal: the agent wins goods it wishes it had not won—and which it would
not have won had it bid otherwise: e.g., 500 on one and only one of the cameras.

In the first of these two examples, the goods are called complements, as they complement one another. In the
second, they are called substitutes. In simultaneous (or sequential) auctions where goods are complements
or substitutes, an alternative to bidding individual valuations is to bid marginal values. The marginal
value of a good to a bidder is the difference between the bidder’s utility assuming that they have the good,
and their utility assuming they don’t. As bidding individual valuations has been shown to be insufficient in
combinatorial auctions, we consider the use of marginal values in bidding strategies next.

3.1 Marginal Values

Consistent with our proposed architecture (and our examples), we assume a price vector q ∈ Rm
≥0, which

represents the highest other-agent bids in all m auctions. Given a bidder i, the marginal value of a good j
to bidder i is the difference in utility between having good j and not having it.

To compute this marginal utility, bidder i determines its optimal utility by searching over all subsets G \ {j}
twice: first, assuming j is available at no cost, while all other prices are given by q; and second, assuming j
is unavailable, while all other prices are given by q.

Formally, if each bidder i ascribes value vi(X) to X ⊆ G, and if q(X) =
∑

k∈X qk, then the marginal value
µij(q) is given by:

µij(q) = max
X⊆G\{j}

[vi(X ∪ {j})− q(X)]− max
X⊆G\{j}

[vi(X)− q(X)] (1)

Question: Consider once again the setup of our first example above. Given both the camera and flash
together, the bidder’s value is 500; but either one of these components without the other is valued at only
1. If the highest other-agent bids on the camera and flash are 200 and 100, respectively, then what are the
marginal values of the camera and the flash? Is bidding marginal values a good idea in this example?

Question: Consider once again the setup of our second example, where a bidder values a Canon AE-1 at 300
and a Canon A-1 at 200, and both cameras together at 400. If the highest other-agent bids on the camera

2The examples in this lab were borrowed from Amy Greenwald and Victor Naroditskiy. Heuristics for the Deterministic
Bidding Problem. SIGecom Exchanges. 6(1):35–44, 2006.
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and flash are 275 and 175, respectively, then what are the marginal values of the camera and the flash? Is
bidding marginal values a good idea in this example?

Note: We will be using a slightly simplified definition of Marginal Value below for our actual implementation
in preparation for LocalBid

3.2 LocalBid

The optimization problem embedded in the marginal value calculation involves optimizing utility by searching
over all nearly all subsets of G, which can be very expensive (even once, let alone twice!). An alternative
approach based on local search leads to a bidding heuristic called LocalBid. The key idea underlying
LocalBid is that the combination of a bid vector bi for bidder i and a price vector q of highest other-agent
bids yields an allocation for bidder i: i.e., xi(bi, q) = {j | bij ≥ qj}. That is, bidder i wins all goods for which
bij ≥ qj at price qj . Now the marginal value of a good j to bidder i, given a vector of bids bi as well as a
price vector q, is simply the difference in value between having good j and not having it: i.e.,

µij(bi, q) = vi(xi(bi, q) ∪ {j})− vi(xi(bi, q) \ {j}) (2)

Note that payments do not come into play in this calculation, because they are fixed (on both sides of the
subtraction, they equal

∑
k∈xi(bi,q)

qk), so they cancel out.

The LocalBid algorithm, starts from some initial bid vector bi (such as each good’s individual valuation),
and then repeatedly iterates over all goods, updating bidder i’s bid on good j to be i’s marginal value for
j, given bi and q. LocalBid is not guaranteed to converge in general, so it is typically run for some fixed
number of iterations, or its bids are smoothed to favor more recent iterations, effectively forcing convergence.

Besides saving on computational complexity, LocalBid can also produce optimal bids in situations where
bidding marginal values straight up would not.

Example: Assume a bidder ascribes a value of 2 to one or more of the m goods, and that the highest
other-agent bid on each good is 1. Bidding marginal values would amount to bidding 1 on each good. Thus,
in the worst case, the marginal utility bidding strategy obtains utility 2−N < 1.

Question: What utility would LocalBid obtain in this example? Can you devise another bidding strategy
that would achieve the same in this example (even if it performs worse in other cases)?

In the next two sections, we revisit the definition of marginal value and the description of LocalBid using
pseudocode, rather than math or English. Your implementations should follow this pseudocode closely.

3.3 Marginal Values Revisited, in Pseudocode

LocalBid calculates marginal values for all goods, given an assumed bid and an assumed price (i.e., highest
other-agent bid) for each good. In Algorithm 1, we provide pseudocode for a key subroutine of LocalBid,
namely the calculation of the marginal value of a single good gj ∈ G, given a valuation function v, a bid
vector b, and a price vector q.

Intuitively, marginal values are calculated by comparing the bidder’s assumed bid for each good to an assumed
price for that same good. Via this comparison, the bidder predicts which goods they will win, and which they
will lose; if the bid is greater than the price, they win; otherwise, they lose. They then find the difference in
valuations between their predicted winnings plus the good in question, and their predicted winnings as they
stand. This valuation difference is the marginal value of interest. Solving for the marginal value of one good
via this procedure (Algorithm 1) is linear in the total number of goods.
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Algorithm 1 Calculate the marginal value of good gj ∈ G

INPUTS: Set of goods G, select good gj , valuation function v, bid vector b, price vector p
OUTPUT: The marginal value (MV) of good gj

bundle ← {}
for each gk ∈ G\{gj} do ▷ Simulate either winning or losing gk by comparing assumed bids and prices.

price ← pk
bid ← bk
if bid > price then ▷ The bidder wins gk. Add it to the bundle of won goods.

bundle.add(gk)
end if

end for

MV ← v(bundle ∪ {gj})− v(bundle)
return MV

3.4 LocalBid Revisited, in Pseudocode

The LocalBid strategy takes as input an initial bid vector b, and updates this bid vector by computing
marginal values until convergence. This vector can be initialized at random, but a common choice is the
bidder’s individual valuations for each good. Marginal values are then calculated for each good in turn via
Algorithm 1, updating the bid vector with these values as the new assumed bids. As each update affects the
marginal values of all the other goods, LocalBid repeats this process, either for a set number of iterations, or
until the bid vector converges. Upon termination, the bid vector represents the agent’s marginal values for
each good, given the rest of the assumed bids (also marginal values). These are the bids placed by LocalBid.

Recall that solving for the marginal value of one good via Algorithm 1 is linear in the total number of goods.
So the runtime to calculate the marginal value of all m goods once is O(m2). Embedded within a loop, the
total runtime of LocalBid is then O(m2 T ), where T is the maximum number of iterations. Depending on
the value of T , this can be a massive runtime improvement over any strategy that enumerates the valuations
of all 2m bundles, including our original marginal value calculation (Equation 1).

Below, we present pseudocode for LocalBid.

4 Time to Code

Hopefully, you recall from your introductory computer science courses that one should demonstrate their
understanding of a problem by writing test cases (i.e., examples of inputs and correct outputs) before coding
anything. Please test your understanding of LocalBid’s marginal value calculation (Equation 2) by developing
a few simple test cases. You can refer to the code in test_example_case in test_marginal_value.py to
see an example we created. Please develop three new test cases of your own before proceeding to code the
algorithm by filling out test_student_case_1, test_student_case_2, and test_student_case_3.

4.1 Calculating a Single Marginal Value

Once you are satisfied with your test cases, and hence your understanding of marginal values, navigate to
test_marginal_value.py. Here, you will implement the following method:
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Algorithm 2 LocalBid

INPUTS: Set of goods G, valuation function v, price vector q
HYPERPARAMETERS: NUM ITERATIONS
OUTPUT:

Initialize bid vector bold with a bid for each good in G ▷ E.g., individual valuations.

for NUM ITERATIONS or until convergence do
bnew ← bold.copy() ▷ Initialize a new bid vector to the current bids.
for each gk ∈ G do

MV← CalcMarginalValue(G, gk, v, bold, q)
bk ← MV ▷ Insert the marginal value into the new bid vector.

end for

▷ Now update the original bid vector bold with the new information stored in bnew.
▷ The simplest update is bold ← bnew, but there are other possibilities (more on this later).
▷ This is also where you can check for convergence.
bold ← UpdateBidVector(bold, bnew)

end for

return bold

Float calculate_marginal_value(

Set[String] G,

String good,

Callable[[Set[String]], Float] v,

Dict[String, Float] b,

Dict[String, Float] p

)

This method should return the marginal value of good. The other arguments correspond to the inputs of the
same name in the pseudocode in Algorithm 1.

When you have finished your implementation, run test_marginal_value.py. This will run your implemen-
tation on our test cases and yours. Make sure they all pass before you move on to implementing LocalBid.

4.2 Implementing LocalBid

Now that you can calculate the marginal value of a single good, you have implemented the most important
part of the machinery used by LocalBid. Next, using this code as a subroutine, you will implement the whole
LocalBid strategy to produce an entire bid vector of marginal values.

Navigate to localbid.py.

You will be implementing the LocalBid strategy to create an iterative, (hopefully) converging calculation of
marginal values. To proceed, please write the following method:

Dict[String, Float] localBid(

Set[String] G,
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Callable[[Set[String]], Float] v,

Dict[String, Float] p,

Int numIterations

)

You should use your own subroutine to calculate a single good’s marginal value. You can do this by calling
calculate_marginal_value.

To copy a bid vector, remember use its copy method.

Recall from Section 3.4 that LocalBid’s runtime over T iterations is O(T m2). Considering the level of
improvement this strategy provides over exponential-time alternatives, LocalBid agents can perform many
iterations during their search, possibly from many different initializations of the bid vector. But how many
iterations is enough to guarantee convergence? And are there some valuation functions for which LocalBid
isn’t guaranteed to converge at all?

Note: Please leave in the print statements provided in the stencil code; these are meant to provide you with
a way to eyeball whether or not the marginal values are converging.

4.2.1 Design Choices

There are two particular design choices in our implementation that may affect the speed of convergence of
LocalBid. The first is the initialization of the bid vector. You can choose to initialize it with random values;
with the individual valuations for each good; or with anything else you like. Initializing to the individual
valuations may speed up convergence in certain special cases. (Think about when and why.) Nevertheless,
we encourage you to experiment with different initializations to see how they affect the outcome.

The second design choice is the method of updating the bid vector after each iteration. The simplest
way to update is to simply replace the old bid vector with the new one. Another possible idea is called
smoothing, where you choose some parameter α ∈ [0, 1] (typically close to 0), and then perform the update
bold = (1 − α)bold + αbnew. Smoothing preserves the relevance of old data, while prioritizing new data.
Admittedly, smoothing is more relevant when the price vectors are sampled rather than provided up-front
(which will happen in the next lab, after you generate probabilistic price predictions). Nonetheless, we
encourage you to try it out this week to see how it affects the outcome.

Extra Credit Smoothing can be used to force the convergence of LocalBid. Otherwise, it is not guaranteed
to converge. Give an example where it does not.

4.2.2 Testing

localbid.py provides you with the functionality to test your implementation of LocalBid to see how quickly
it converges, if at all. You should test it out using multiple valuation distributions.

Notice the SampleValuations dataclass. This represents the valuation distribution for testing purposes.
When you run localbid.py, the valuation distribution in question, along with a generated price vector for
a set of 16 goods, is passed to your LocalBid function, which will print out the bid vector at each iteration.
Hopefully, you will observe quick convergence.

You should run localbid.py using the following four values for the SampleValuations constant:

• SampleValuations.additive_valuation is the simplest valuation of all. The value of any bundle is
the sum of the individual valuations of the goods in the bundle.
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• SampleValuations.complement_valuation is a valuation with a global complement. It is like an
additive valuation, but adding any additional good to a bundle increases its valuation by another 5%.

• SampleValuations.substitute_valuation is a valuation with a global substitute. It is like an additive
valuation, except that adding any additional good to a bundle decreases its valuation by another 5%.

• SampleValuations.randomized_valuation is a valuation for which there exists a separate, random-
ized, complement or substitute for each possible combination of goods. Since there are random values
involved, be sure to run this one a few times.

See if you can get each one to converge.

To be sure your implementation is correct, check that when using additive_valuation, your bid vector
converges to:

BidVector: {

[A : 70.0], [B : 55.0], [C : 85.0], [D : 50.0],

[E : 15.0], [F : 65.0], [G : 80.0], [H : 90.0],

[I : 75.0], [J : 60.0], [K : 40.0], [L : 80.0],

[M : 90.0], [N : 25.0], [O : 65.0], [P : 70.0],

}

5 To Be Continued . . .

This lab does not include a competition, but these bidding strategies will serve as a foundation for you to
enter auction competitions in upcoming labs, as well as in the final project.

In the next lab, you will be combining LocalBid, a bid optimization routine, with a price prediction method
to create fully functional agents for simultaneous second-price auctions.
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