
CS1440/2440, Spring 2025 Lab 1: Repeated Games of Complete Information

1 CSCI 1440/2440 Labs

CSCI 1440/2440 labs are designed to equip students with the skills necessary to develop autonomous trading
agents, such as those that might participate in high-frequency trading. To achieve this goal, students design
and build agents in lab each week, for simulation environments ranging from simple and deterministic (e.g.,
the Repeated Prisoners’ Dilemma) to complex and stochastic (Spectrum Auctions and Ad Exchanges). The
most successful agent strategies tend to make predictions (e.g., via machine learning) about other agents,
individually or collectively, and then optimize (i.e., best-respond) to those predictions.

Labs are run using a simulator in which user-designed autonomous agents trade in real time in user-defined
environments. The TAs have defined all the environments, and they have also designed some sample agents,
against which you can test your own agent ideas. Most labs are structured such that the students first develop
their agents “offline,” meaning locally, against the TA’s built-in agents. Then, at the end, there is typically
a competition, where the students’ agents compete with one another “online.” These competitions comprise
multiple runs, with agent scores projected at the end of the lab.

In this lab, you will be implementing two different agent strategies, and playing three different two-player
games: the Prisoners’ Dilemma, Rock-Paper-Scissors, and Chicken. The two agent strategies that
you will code to play these games are called Fictitious Play and Exponential Weights. Both algorithms
are known to converge to Nash equilibrium in repeated zero-sum games.1,2

2 Setup

The stencil code for Lab 1 is available here. It includes two Python files in which you will implement fictitious
play and exponential weights:

• exponential_stencil.py

• fictitious_play_stencil.py

• competition_agent.py

Please be sure to read the README.md. Here is an abridged version of the setup guide described in there:

1. Clone the repository with the command
git clone https://github.com/brown-agt/lab01-stencil.git

2. Create a python virtual environment and activate it. Be sure to use python 3.10 or higher.
3. Run pip install --upgrade agt server

3 The Prisoners’ Dilemma

The Prisoners’ Dilemma is one of the most well-known and fundamental problems in game theory. One
version of the story goes as follows:

Alice and Bob are suspected of committing the same crime. They are being questioned simultaneously in
separate rooms, and cannot communicate with each other. Each prisoner has the option to either cooperate
(do not incriminate the other prisoner) or defect (implicate the other prisoner). If one cooperates and one
defects, the cooperating prisoner receives a lengthy jail sentence (i.e., a large negative payoff), while the
defecting prisoner goes free. Should they both cooperate, they get shorter jail sentences; and should they

1Julia Robinson. An iterative method of solving a game. Annals of Mathematics, 54(2):296—301, 1951.
2Yoav Freund & Robert Schapire. Game theory, on-line prediction and boosting. Proceedings of the 9th Annual Conference

on Computational Learning Theory, pp. 325–332, 1996.
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both defect, they get longer sentences, although shorter than had one prisoner cooperated (the judge goes
easier on them, since they both assisted in the prosecution of the other).

The payoff matrix of this game as is shown below:

C D
C -1, -1 -3, 0
D 0, -3 -2, -2

Question: Does this game have an equilibrium? If so, what is it?

4 Rock-Paper-Scissors

Rock-Paper-Scissors, or Rochambeau, can also be represented as a game. (If you are not familiar with the
rules of this game, we refer you to Homework 1.)

Rock-Paper-Scissors is an example of a zero-sum game, because one player’s win is the other player’s loss.
Its payoff matrix is as follows:

R P S
R 0, 0 -1, 1 1, -1
P 1, -1 0, 0 -1, 1
S -1, 1 1, -1 0, 0

Question: Does this game have an equilibrium? If so, what is it? (Brainstorm about the answer to this
question with your partner, but there is no need to derive the solution in lab, as you will do so on Homework 1.)

5 Fictitious Play

Recall from class our analysis of the p-Beauty Contest. Did the class play an equilibrium strategy? They did
not, and nor did the experimental subjects in Nagel’s research paper.3

If your opponents in a game cannot be “trusted” to play the equilibrium, or if there is more than one
equilibrium and none is agreed upon in advance, an alternative is to learn how your opponents are actually
playing the game, and to best respond to their behavior. This is the essence of the Fictitious Play strategy.

Fictitious Play collects historical data during a repeated game. It uses these data to build an empirical
probability distribution over the opponents’ actions based on their history of play, which it then takes as a
prediction of their next action (or action profile, if there are multiple opponents). Finally, it searches among
its actions for the one that yields the highest expected payoff, given its prediction.

5.1 Prisoners’ Dilemma

After hundreds of rounds of the Prisoners’ Dilemma, you observe that your opponent defects 80% of the time.
What is your best move?

As the row player:

3Rosemarie Nagel. Unraveling in guessing games: An experimental study. American Economic Review, 85(5):1313–26, 1995.
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C (20%) D (80%)
C -1, -1 -3, 0
D 0, -3 -2, -2

• Cooperating gives an expected payoff of 0.2(−1) + 0.8(−3) = −2.6
• Defecting gives an expected payoff of 0.2(0) + 0.8(−2) = −1.6

Thus, Defect is your best move. Of course, Defect is also the dominant strategy in this game, so no
prediction about your opponent’s next move would ever lead you to Cooperate. Fictitious play becomes
far more interesting in the absence of a dominant strategy.

5.2 Rock-Paper-Scissors

Imagine that you and your friend have been playing Rock-Paper-Scissors for hours on end. You have been
playing each move with equal probability. Meanwhile, your friend has been choosing Rock 25% of the time,
Paper 25% of the time, and Scissors, the remaining 50%. It’s time to figure out whether you’ve been playing
your best strategy, or if you can do better.

Once again, the Rock-Paper-Scissors payoff matrix is below:

R (25%) P (25%) S (50%)
R 0, 0 -1, 1 1, -1
P 1, -1 0, 0 -1, 1
S -1, 1 1, -1 0, 0

You are the row player. You opponent’s move probabilities are shown.

Question: What is your expected payoff if you play each move with equal probability?

Question: What is your best move according to Fictitious Play? What is its expected payoff? Is it a better
strategy than what you’ve been doing?

Question: Fictitious Play is not merely a two-player game strategy; it can be extended to any repeated game
where the payoff matrices are known and opponents’ actions are observed. What are some of the strengths
and weaknesses of this strategy? In which situations does it work well, and in which situations is it limited?

5.3 Simulations

For the first coding section of this lab, you will be implementing a Fictitious Play agent. Your agent will
compete against a TA-built bot in a 1000-round simulation of Rock-Paper-Scissors.

Task: Implement Fictitious Play in fictitious_play_stencil.py

To do so, you need to fill in two methods (look for TODO: in the code!):

1. predict: Use the opponent’s previous moves to generate a probability distribution over the opponent’s
next move. N.B. The opponent’s previous moves are stored in a List, self.opp_action_history,
which is updated after each round of the simulation by the server.

2. optimize: Use the probability distribution over the opponent’s moves, along with knowledge of the
payoff matrix, to calculate the best move according to the Fictitious Play strategy.
N.B. self.calculate_utils(a1, a2) returns the utility if player 1 plays a1 and player 2 plays a2 in
the form [u1, u2] where u1 is player 1’s utility and u2 is player 2’s utility
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Click Run (or run fictitious_play_stencil.py in your terminal) and your agent will go head-to-head
with a TA bot for 1000 rounds. If Fictitious Play has been implemented correctly, your agent should win,
earning payoffs of about 500–600 against the TA bots over the 1000 rounds. (N.B. Our bot’s strategy is
randomized, so you may not see this outcome every time.)

6 Exponential Weights

Another popular agent strategy for learning in repeated games is Exponential Weights. This strategy does
not require knowledge of other players’ actions; it only requires that your agent keep track of its own results!

An agent running Exponential Weights keeps track of its average payoff over time from playing each of its
actions. Using these average payoffs, the agent builds a probability distribution, from which its next action
is sampled. This strategy works under the assumption that you should continue to choose actions that have
been strong historically, but at the same time, you should not stop exploring other actions with at least some
small probability, in case the environment changes (which happens when your opponent is also learning).

Here is a more formal description of the strategy. Given a set of available actions A, and a vector of historical
average payoffs4 r ∈ R|A|, the probability of choosing action a ∈ A is:

p(a) =
era∑

a′∈A era′

For example, in a game where choosing action x has provided an average payoff of 2 and choosing action y
has provided an average payoff of 1.5, your next move is sampled from:

p(x) =
e2

e2 + e1.5
≈ 62%

p(y) =
e1.5

e2 + e1.5
≈ 38%

Question: Compared to Fictitious Play, what are some benefits and drawbacks of Exponential Weights?

Question: There are a few variations of Exponential Weights. For examples, some versions assign higher
weights to more recent moves based on the assumption that these moves are more relevant. When would you
expect a version like this to work well?

6.1 Simulations

Next, you will be implementing an Exponential Weights agent, and you will again be competing with a TA
bot in a 1000-round simulation of Rock-Paper-Scissors.

Task: Implement Exponential Weights in exponential_stencil.py.

To do so, you only need to fill in one method (again, look for TODO: in the code!):

1. calc_move_probs: Use your historical average payoffs to generate a probability distribution over your
next move using the Exponential Weights strategy.

Note: The support code handles samples actions from this probability distribution for you; all you need to
do is return a distribution.

4Payoffs are also referred to as rewards; hence, the letter r.
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Click Run (or run exponential_stencil.py in your terminal) and your agent will once again face off
against a TA bot. As above, if your implementation is correct, your agent should win, earning payoffs of
about 150-200 more than our bot over the 1000 rounds.

Question: Does one of the two strategies perform much better than the other against our bot?

7 Class Competition

Having implemented two agent strategies, and run two simulations against TA bots, you should have a pretty
good idea of how the simulation environment works by now. More importantly, you may also have some good
ideas for strategies that can be used to play different games.

To conclude this lab, you will be playing the game of Chicken repeatedly not against the TA bots, but
against other students’ bots. You are free to use any strategy you want in this competition, whether it is
inspired by the ideas reviewed today, or something completely original, but your strategy should not be
uniform random, as that would make for a boring competition!

7.1 Chicken

Chicken, like the Prisoners’ Dilemma, is a symmetric two-player, two-action, non-zero-sum game.

The premise is that two daredevil stuntmen are trying to impress a casting director in order to be chosen
for Fast and Furious 12. The two stuntmen are driving in opposite directions on the road and are about
to collide, head-on. Each has the option to Swerve or Continue going straight. If both players continue,
they will crash, and receive a massive negative payoff in the form of injuries. If they both swerve, neither is
rewarded with the part, as the casting director is left unimpressed. But if one swerves and one continues,
the swerving player loses face, while the player who continued is rewarded handsomely.

Chicken is defined by the following payoff matrix:

S C
S 0, 0 -1, 1
C 1, -1 -5, -5

The only way to win is to continue while the other player swerves. But are you willing to take the risk?

7.2 Implementing your Competition Agent

Task: Implement an agent that plays Chicken in competition_agent.py.

To do so, you again only need to fill in two methods (as usual, look for TODO: in the code!):

1. setup: Initializes the agent for each new game they play.
2. get_action: Returns your agent’s next action
3. update: Updates your agent with the current history, namely your opponent’s choice and your agent’s

utility in the last game

Class competitions take longer to run than local simulations, as they involve message passing over a network.
Consequently, your agent must return its move within 1 second. If your get_action() method takes
longer than 1 second or if your agent submits an invalid move, your action will not register, and your agent
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will accrue a penalty of −5 for that round. That said, you are encouraged to brainstorm with your partner
and potentially implement more complex strategies than you learned about today.

For our class competition leaderboard, your agent will need a name. You should name your agent by filling
in the agent_name variable in competition_agent.py.

7.3 Testing your Competition Agent Locally

Before participating in the class competition, you can test your agent locally, in a mock competition against a
TA bot. To do so, simply run your competition agent file, competition_agent.py, in your terminal of choice.
We implemented this functionality so that you can make sure your agent does not crash in competition mode,
thereby making it more likely your agent will run smoothly in the class competition.

The class competition is also launched via competition_agent.py, using the join_server boolean, along
with the appropriate IP address and port. This latter information will be announced during lab.

8 Simulation Details; TLDR

Your task in this lab is to implement Fictitious Play and Exponential Weights agents, specifically in the
methods predict() and optimize() for the former, and calc move probs() for the latter.

To provide context for these methods, we explain how the simulation proceeds, first in terms of a more generic
get action() method, and then in terms of the methods you will implement in this lab.

At a high-level, the agt server simulates a repeated game tournament as follows:

1. Your agent is paired against another agent (or set of agents, as the game rules require) in a round robin
style. Each agent will face off against every other agent in a repeated game twice, once as player 1 and
once as player 2.

2. Before each repeated game simulation begins, the agt server calls each agent’s setup() method.
3. Then, during each round of the simulation:

(a) agt server requests an action from each agent. Upon receiving this request, each agent calls its
get action() method, and then sends its action to agt server.

(b) agt server executes these moves and calculates payoffs.
(c) agt server then broadcasts the results back to the agents in a sanitized json report summa-

rizing the round’s results. (The report is sanitized, as not all information is necessarily broad-
cast to all agents.) Upon receipt, your agent’s history is automatically updated with the infor-
mation it receives, which it can then retrieve using methods like self.get action history(),
self.get util history(), etc..

(d) Once the round has concluded, agt server calls the agent’s update() method, which gives it a
chance to update its strategy.

4. After the simulation (i.e., all rounds of the repeated game) conclude, agt server resets the game
history and calls the agents setup() methods to allow them to reset for the next simulation.

The calls to the get action() method are implemented differently for Fictitious Play and Exponential
Weights agents. For the former, the agt server calls the agent’s predict() method, so that it can build
its probability distribution, and then optimize() to solicit its next move. For the latter, the agt server
calls calc move probs(), and then samples from this distribution to arrive at the agent’s next move.
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