Project 3 Results

Junzhe Xu 80.3% Michael Wang 79.3% James Besancon 77.7% Sarah Parker 77.5% Zhile Ren 77.5%

Chun-che Wang 82.9%
Patsorn Sangkloy 82.9%

Dat Quach 72.4%
Fan Yang 72.3%
Daniel Fernandez 72.0%
Wil Yegelwel 71.8%
Arthur Yidi 71.5%
Tuo Shao 71.4%
Fan Gao 71.3%
Jixuan Wang 71.0%
Valay Shah 70.9%
Zhiyuan Zhang 70.5%
Ryan Roelke 70.1%
Kidai Kwon 70.0%

Context and Spatial Layout

Computer Vision CS 143, Brown

James Hays

Context in Recognition

 Objects usually are surrounded by a scene that can provide context in the form of nearby objects, surfaces, scene category, geometry, etc.

Contextual Reasoning

 Definition: Making a decision based on more than *local* image evidence.

Context provides clues for function

What is this?

Context provides clues for function

• What is this?

Now can you tell?

Is local information enough?

Is local information even enough?

Is local information even enough?

Local features

Contextual features

The system does not care about the scene, but we do...

We know there is a keyboard present in this scene even if we cannot see it clearly.

We know there is no keyboard present in this scene

The multiple personalities of a blob

The multiple personalities of a blob

ABC

ABC

12 13 14

12 A 13 C 14

Look-Alikes by Joan Steiner

Look-Alikes by Joan Steiner

Look-Alikes by Joan Steiner

Biederman 1982

- Pictures shown for 150 ms.
- Objects in appropriate context were detected more accurately than objects in an inappropriate context.
- Scene consistency affects object detection.

Why is context important?

• Changes the interpretation of an object (or its function)

• Context defines what an unexpected event is

The Context Challenge

http://web.mit.edu/torralba/www/carsAndFacesInContext.html

No local face detector! Just context from Scene Statistics

There are many types of context

Local pixels

window, surround, image neighborhood, object boundary/shape, global image statistics

2D Scene Gist

global image statistics

3D Geometric

3D scene layout, support surface, surface orientations, occlusions, contact points, etc.

Semantic

 event/activity depicted, scene category, objects present in the scene and their spatial extents, keywords

Photogrammetric

camera height orientation, focal length, lens distortion, radiometric, response function

Illumination

sun direction, sky color, cloud cover, shadow contrast, etc.

Geographic

GPS location, terrain type, land use category, elevation, population density, etc.

Temporal

nearby frames of video, photos taken at similar times, videos of similar scenes, time of capture

Cultural

photographer bias, dataset selection bias, visual cliches, etc.

Cultural context

Jason Salavon: http://salavon.com/SpecialMoments/Newlyweds.shtml

Cultural context

Who is Mildred? Who is Lisa?

Cultural context

Andrew Gallagher: http://chenlab.ece.cornell.edu/people/Andy/projectpage_names.html

1. Context for recognition

1. Context for recognition

- 1. Context for recognition
- 2. Scene understanding

- 1. Context for recognition
- 2. Scene understanding
- 3. Many direct applications
 - a) Assisted driving
 - b) Robot navigation/interaction
 - c) 2D to 3D conversion for 3D TV
 - d) Object insertion

3D Reconstruction: Input, Mesh, Novel View

Robot Navigation: Path Planning

Spatial Layout: 2D vs. 3D

Context in Image Space

[Torralba Murphy Freeman 2004]

34

[Kumar Hebert 2005]

[He Zemel Cerreira-Perpiñán 2004]

But object relations are in 3D...

How to represent scene space?

Wide variety of possible representations

Scene-Level Geometric Description

a) Gist, Spatial Envelope

b) Stages

Retinotopic Maps

c) Geometric Context

d) Depth Maps

Highly Structured 3D Models

e) Ground Plane

f) Ground Plane with Billboards

g) Ground Plane with Walls

h) Blocks World

i) 3D Box Model

Key Trade-offs

- Level of detail: rough "gist", or detailed point cloud?
 - Precision vs. accuracy
 - Difficulty of inference

- Abstraction: depth at each pixel, or ground planes and walls?
 - What is it for: e.g., metric reconstruction vs. navigation

Low detail, Low abstraction

Holistic Scene Space: "Gist"

Oliva & Torralba 2001

Torralba & Oliva 2002

High detail, Low abstraction

Depth Map

Saxena, Chung & Ng 2005, 2007

Medium detail, High abstraction

Room as a Box

Hedau Hoiem Forsyth 2009

Surface Layout: describe 3D surfaces with geometric classes

The challenge

Our World is Structured

Our World

Learn the Structure of the World

Training Images

Infer the most likely interpretation

Unlikely

Geometry estimation as recognition

Use a variety of image cues

Vanishing points, lines

Color, texture, image location

Texture gradiestide: Derek Hoiem

Surface Layout Algorithm

Surface Layout Algorithm

Hoiem Efros Hebert (2007)

Surface Description Result

Results

Input Image Ground Truth Our Result

Results

Results

Failures: Reflections, Rare Viewpoint

Average Accuracy

Main Class: 88%

Subclasses: 61%

Main Class						
	Support	Vertical	Sky			
Support	0.84	0.15	0.00			
Vertical	0.09	0.90	0.02			
Sky	0.00	0.10	0.90			

Vertical Subclass							
	Left	Center	Right	Porous	Solid		
Left	0.37	0.32	0.08	0.09	0.13		
Center	0.05	0.56	0.12	0.16	0.12		
Right	0.02	0.28	0.47	0.13	0.10		
Porous	0.01	0.07	0.03	0.84	0.06		
Solid	0.04	0.20	0.04	0.17	0.55		

Automatic Photo Popup

Labeled Image

Fit Ground-Vertical Boundary with Line Segments Form Segments into Polylines

Cut and Fold

Final Pop-up Model

[Hoiem Efros Hebert 2005]

Automatic Photo Pop-up

Mini-conclusions

- Can learn to predict surface geometry from a single image
- Very rough models, much room for improvement

Things to remember

- Objects should be interpreted in the context of the surrounding scene
 - Many types of context to consider
- Spatial layout is an important part of scene interpretation, but many open problems
 - How to represent space?
 - How to learn and infer spatial models?
- Consider trade-offs of detail vs. accuracy and abstraction vs. quantification