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Project 2 Results

* http://cs.brown.edu/courses/cs143/results/pr
0j2/psangkloy/

* http://cs.brown.edu/courses/cs143/results/pr
0j2/zyp/

* http://cs.brown.edu/courses/cs143/results/pr
0j2/ix30/

e http://cs.brown.edu/courses/cs143/results/pr
0j2/tuo/
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Recap: Attributes and Crowdsourcing

* |f you can only get one label per instance,
maybe a categorical label is the most
informative.

* But now that crowdsourcing exists, we can get
enough training data to simultaneously reason
about a multitude of object / scene properties
(e.g. attributes).

* |[n general, there is a broadening of interesting
recognition tasks.

e Zero-shot learning: model category with an
attribute distribution only.
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How Do Humans Sketch Objects?

Mathias Eitz, James Hays, and Marc Alexa. Siggraph 2012
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Sketches Are Important

20.000 years ago (Lascaux, France)



Sketches Are Important
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~50 years ago (Picasso)



Sketches Are Important

‘ML,&} [ You are drawing PEGASUS
14 for fatguyinawagon
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Sketches Are Important

Despite decades of Computer Graphics research:

Sketching is the only method for
most people to render visual content



Prior Work: Domain Recognition
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Prior Work: Image Synthesis

 Photosketcher, Eitz et al., CGA 2011
e Sketch2Photo, Chen et al., SIGGRAPH Asia 2009



Prior Work: ShadowDraw

Before

e Ol & | B

e Lee, Zitnick, Cohen, SIGGRAPH 2011



Our work



How Do Humans Sketch Objects?

* Need many example sketches from a variety of
humans

e We used amazon Mechanical Turk

“Please sketch an image that is
clearly recognizable to other
humans as belonging to the
following category: airplane”



How Do Humans Sketch Objects?

@ text labels not allowed!
‘ N
@ large black areas not allowed!

Mechanical Turk Instructions



How Do Humans Sketch Objects?
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@ not easily recognizable

Mechanical Turk Instructions



How Do Humans Sketch Objects?

e 20,000 sketches in 250 categories

— 1,350 unique participants, 741 hours drawing time




Human Sketch Recognition

e 2nd study on Amazon Mechanical Turk
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animals

buildings, home, office
leisure, personal items
nature, body, food
sound, figures, weapons
vehicles, traffic

= animal (air)

animal (ground) a-|

animal (ground) m-z

animal (water)

>

monkey
mouse (animal)
panda
penguin

pig

rabbit
rooster
scorpion

sea turtle
sheep

snail

snake
spider
squirrel
standing bird
teddy-bear
tiger

zebra



Human Sketch Recognition

* 73% overall human recognition accuracy

accuracy vs. frsketches This particular worker:
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Human Sketch Recognition

* 73% overall human recognition accuracy

t-shirt snake comb flower eyeglasses elephant
100% % 99% 99% 98% 98%
leaf sun pineapple airplane trousers ladder
"~ -
96%

98% 98% 96% 96% chair 96%
apple wrist-watch butterfly umbrella Tc:hair key

96% 96% 96% - 05% 95%




Human Sketch Recognition

category confusing categories category confusing categories
panda bear tire wheel
c . . 44%
21%
donut
16%
fan

6%




Sketch Recognition

\‘ﬁ fish
YO R DR Pn=Nli> =
m DT> C\//;ﬂ g@@




Sketch Recognition
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Bag-of-Features Representation
with SIFT-like features

reduce into

feature vector
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Sketch Feature Space

500 dimensional space



Classification
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accuracy
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56% accuracy
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Computational Sketch Recognition smmpmom,)

human: 96% 100% 96% 95% 13%
computer: 96% 96% 96% 96% 96%
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human: 79% 81% 35% 51% 31%
computer: 7% 7% 11% 11% 14%
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Sketch Recognition

* Does the system generalize beyond our AMT
sketches?

flying bird camel sheep horse

Is: antilope



Conclusions
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wristwatch flying bird flower person walking

= People tend to agree on iconic representations
= often abstract and far from original geometry

= Dataset available at: http://cybertron.cg.tu-berlin.de/eitz/
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