Recap: Viola/Jones detector

- Rectangle features
- Integral images for fast computation
- Boosting for feature selection
- Attentional cascade for fast rejection of negative windows

Project 3

- I have office hours today
- Let's talk more about scene recognition

Scene Categorization

Oliva and Torralba, 2001

Coast

Forest

Highway

Inside City

Mountain

Open Country

Street

Tall Building

Fei Fei and Perona, 2005

Kitchen

Living Room

Office

Suburb

Lazebnik, Schmid, and Ponce, 2006

Industrial

Store

15 Scene Database

How many object categories are there?

397 Well-sampled Categories

Evaluating Human Scene Classification

"Good worker" Accuracy 98%

90%

68%

bedroom(100%)

bullnng(100%)

Scene category

Most confusing categories

Inn (0%)

Bayou (0%)

Basilica (0%)

Restaurant patio (44%)

River (67%)

Cathedral(29%)

Chalet (19%)

Coast (8%)

Courthouse (21%)

Conclusion: humans can do it

- The SUN database is reasonably consistent and differentiable -- even with a huge number of very specific categories, humans get it right 2/3rds of the time with no training.
- We also have a good benchmark for computational methods.

How do we classify scenes?

How do we classify scenes?

Different objects, different spatial layout

Fireplace

Coffee table

armchair

armchair

Floor

alarm

Side-table

carpet

Bed

Which are the important elements?

Similar objects, and similar spatial layout

Different lighting, different materials, different "stuff"

Scene emergent features

"Recognition via features that are not those of individual objects but "emerge" as objects are brought into relation to each other to form a scene." – Biederman 81

Simple geometric forms

Textures

Oliva and Torralba, 2001

Global Image Descriptors

- Tiny images (Torralba et al, 2008)
- Color histograms
- Self-similarity (Shechtman and Irani, 2007)
- Geometric class layout (Hoiem et al, 2005)
- Geometry-specific histograms (Lalonde et al, 2007)
- Dense and Sparse SIFT histograms
- Berkeley texton histograms (Martin et al, 2001)
- HoG 2x2 spatial pyramids
- Gist scene descriptor (Oliva and Torralba, 2008)

Texture Features

Global Texture Descriptors

Bag of words

Sivic et. al., ICCV 2005 Fei-Fei and Perona, CVPR 2005

Non localized textons

Walker, Malik. Vision Research 2004

Spatially organized textures

M. Gorkani, R. Picard, ICPR 1994 A. Oliva, A. Torralba, IJCV 2001

S. Lazebnik, et al, CVPR 2006

R. Datta, D. Joshi, J. Li, and J. Z. Wang, Image Retrieval: Ideas, Influences, and Trends of the New Age, ACM Computing Surveys, vol. 40, no. 2, pp. 5:1-60, 2008.

Gist descriptor

Oliva and Torralba, 2001

- Apply oriented Gabor filters over different scales
- Average filter energy in each bin

- 8 orientations
- 4 scales
- x 16 bins
- 512 dimensions

Similar to SIFT (Lowe 1999) applied to the entire image

M. Gorkani, R. Picard, ICPR 1994; Walker, Malik. Vision Research 2004; Vogel et al. 2004; Fei-Fei and Perona, CVPR 2005; S. Lazebnik, et al, CVPR 2006; ...

Gist descriptor

Gist descriptor

Example visual gists

Global features (I) ~ global features (I')

Textons

Textons

Filter bank

K-means (100 clusters)

Malik, Belongie, Shi, Leung, 1999

label = bedroom

label = beach

occurences in image

universal textons

Walker, Malik, 2004

Bag of words

Spatially organized textures

Bag of words & spatial pyramid matching

Sivic, Zisserman, 2003. Visual words = Kmeans of SIFT descriptors

Learning Scene Categorization

Scene recognition

100 training samples per class

Feature Accuracy

Classifier: 1-vs-all SVM with histogram intersection, chi squared, or RBF kernel.

Xiao, Hays, Ehinger, Oliva, Torralba; maybe 2010

limousine interior (95% vs 80%) riding arena (100% vs 90%) sauna (96% vs 95%) skatepark (96% vs 90%) subway interior (96% vs 80%)

Humans bad Comp. bad

Human good Comp. bad

Human bad Comp. good

Local Scene Detection

beach detections

village detections

harbor detections

Confident Subscene Detections

Database and source code available at http://groups.csail.mit.edu/vision/SUN/

Additional details available:

SUN Database: Large-scale Scene Recognition from Abbey to Zoo. Jianxiong Xiao, James Hays, Krista A. Ehinger, Aude Oliva, Antonio Torralba. *CVPR 2010.*

How do we do better than 40%?

- Deep learning gets about the same performance
- Fisher vector encoding gets up to 47.2%