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Project 2 questions? 



This section: correspondence and 
alignment 

 

• Correspondence: matching points, patches, 
edges, or regions across images 

 

 

≈ 



  

 Fitting: find the parameters of a model that 
best fit the data 

 

 

 Alignment: find the parameters of the 
transformation that best align matched points 

 

 

Review 



Review: Fitting and Alignment 

• Design challenges 

– Design a suitable goodness of fit measure 

• Similarity should reflect application goals 

• Encode robustness to outliers and noise 

– Design an optimization method 

• Avoid local optima 

• Find best parameters quickly 

 

 



Fitting and Alignment: Methods 

 

• Global optimization / Search for parameters 

– Least squares fit 

– Robust least squares 

– Iterative closest point (ICP) 

 

• Hypothesize and test 

– Hough transform 

– RANSAC 

 



Review: Hough Transform 

 

1. Create a grid of parameter values 

 

2. Each point votes for a set of parameters, 
incrementing those values in grid 

 

3. Find maximum or local maxima in grid 
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Review: Hough transform 

Given a set of points, find the curve or line that explains 

the data points best 

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High 

Energy Accelerators and Instrumentation, 1959  

Hough space 

Slide from S. Savarese 
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Review: Hough transform 



Hough Transform 

• How would we find circles? 

– Of fixed radius 

– Of unknown radius 



Hough transform conclusions 
Good 
• Robust to outliers: each point votes separately 
• Fairly efficient (much faster than trying all sets of parameters) 
• Provides multiple good fits 

 

Bad 
• Some sensitivity to noise 
• Bin size trades off between noise tolerance, precision, and 

speed/memory 
– Can be hard to find sweet spot 

• Not suitable for more than a few parameters 
– grid size grows exponentially 

 

Common applications 
• Line fitting (also circles, ellipses, etc.) 
• Object instance recognition (parameters are affine transform) 
• Object category recognition  (parameters are position/scale) 



RANSAC 

Algorithm: 
 

1.  Sample (randomly) the number of points required to fit the model 

2.  Solve for model parameters using samples  

3.  Score by the fraction of inliers within a preset threshold of the model 

 

Repeat 1-3 until the best model is found with high confidence 

Fischler & Bolles in ‘81. 

(RANdom SAmple Consensus) : 



RANSAC 

Algorithm: 
 

1.  Sample (randomly) the number of points required to fit the model (#=2) 

2.  Solve for model parameters using samples  

3.  Score by the fraction of inliers within a preset threshold of the model 

 

Repeat 1-3 until the best model is found with high confidence 

Illustration by Savarese 

Line fitting example 



RANSAC 

Algorithm: 
 

1.  Sample (randomly) the number of points required to fit the model (#=2) 

2.  Solve for model parameters using samples  

3.  Score by the fraction of inliers within a preset threshold of the model 

 

Repeat 1-3 until the best model is found with high confidence 

Line fitting example 





RANSAC 

6IN

Algorithm: 
 

1.  Sample (randomly) the number of points required to fit the model (#=2) 

2.  Solve for model parameters using samples  

3.  Score by the fraction of inliers within a preset threshold of the model 

 

Repeat 1-3 until the best model is found with high confidence 

Line fitting example 





RANSAC 

14IN
Algorithm: 
 

1.  Sample (randomly) the number of points required to fit the model (#=2) 

2.  Solve for model parameters using samples  

3.  Score by the fraction of inliers within a preset threshold of the model 

 

Repeat 1-3 until the best model is found with high confidence 



How to choose parameters? 
• Number of samples N 

– Choose N so that, with probability p, at least one random sample is free 
from outliers (e.g. p=0.99) (outlier ratio: e ) 

• Number of sampled points s 
– Minimum number needed to fit the model 

• Distance threshold  
– Choose   so that a good point with noise is likely (e.g., prob=0.95) within threshold 

– Zero-mean Gaussian noise with std. dev. σ: t2=3.84σ2 

 

    s
e11log/p1logN 

proportion of outliers e 

s 5% 10% 20% 25% 30% 40% 50% 

2 2 3 5 6 7 11 17 

3 3 4 7 9 11 19 35 

4 3 5 9 13 17 34 72 

5 4 6 12 17 26 57 146 

6 4 7 16 24 37 97 293 

7 4 8 20 33 54 163 588 

8 5 9 26 44 78 272 1177 

modified from  M. Pollefeys 



RANSAC conclusions 

Good 
• Robust to outliers 
• Applicable for larger number of objective function parameters 

than Hough transform 
• Optimization parameters are easier to choose than Hough 

transform 

 

Bad 
• Computational time grows quickly with fraction of outliers 

and number of parameters  
• Not good for getting multiple fits 

 

Common applications 
• Computing a homography (e.g., image stitching) 
• Estimating fundamental matrix (relating two views) 



How do we fit the best alignment? 

 



Alignment 

 

• Alignment: find parameters of model that maps 
one set of points to another 

 

• Typically want to solve for a global transformation 
that accounts for *most* true correspondences 

 

• Difficulties 

– Noise (typically 1-3 pixels) 

– Outliers (often 50%)  

– Many-to-one matches or multiple objects 

 

 



Parametric (global) warping 

 Transformation T is a coordinate-changing machine: 
     p’ = T(p) 
  
 What does it mean that T is global? 

– Is the same for any point p 
– can be described by just a few numbers (parameters) 

  
 For linear transformations, we can represent T as a matrix 
       p’ = Tp 

 

T 

p = (x,y) p’ = (x’,y’) 
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Common transformations 

translation rotation aspect 

affine perspective 

original 

Transformed 

Slide credit (next few slides): 

A. Efros and/or S. Seitz 



Scaling 
• Scaling a coordinate means multiplying each of its components by a 

scalar 

• Uniform scaling means this scalar is the same for all components: 

 2 



• Non-uniform scaling: different scalars per component: 

 

Scaling 

X  2, 

Y  0.5 



Scaling 

• Scaling operation: 

 

 

• Or, in matrix form: 
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2-D Rotation 

 

(x, y) 

(x’, y’) 

x’ = x cos() - y sin() 

y’ = x sin() + y cos() 



2-D Rotation 
This is easy to capture in matrix form: 

 

 

 

 

 

 

Even though sin() and cos() are nonlinear functions of , 

– x’ is a linear combination of x and y 

– y’ is a linear combination of x and y 

 

What is the inverse transformation? 

– Rotation by – 

– For rotation matrices 
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Basic 2D transformations 

Translate Rotate 

Shear Scale 
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Affine 

Affine is any combination of 

translation, scale, rotation, 

shear 



Affine Transformations 

Affine transformations are combinations of  

• Linear transformations, and 

• Translations 

Properties of affine transformations: 

• Lines map to lines 

• Parallel lines remain parallel 

• Ratios are preserved 

• Closed under composition 
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Projective Transformations 
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'Projective transformations are combos of  

• Affine transformations, and 

• Projective warps 

Properties of projective transformations: 

• Lines map to lines 

• Parallel lines do not necessarily remain parallel 

• Ratios are not preserved 

• Closed under composition 

• Models change of basis 

• Projective matrix is defined up to a scale (8 DOF) 



2D image transformations (reference table) 

Szeliski 2.1 



Example: solving for translation 

A1 

A2 A3 
B1 

B2 B3 

Given matched points in {A} and {B}, estimate the translation of the object 
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Example: solving for translation 

A1 

A2 A3 
B1 

B2 B3 

Least squares solution 
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1. Write down objective function 

2. Derived solution 

a) Compute derivative 

b) Compute solution 

3. Computational solution 

a) Write in form Ax=b 

b) Solve using pseudo-inverse or 

eigenvalue decomposition 
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Example: solving for translation 

A1 

A2 A3 
B1 

B2 B3 

RANSAC solution 
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1. Sample a set of matching points (1 pair) 

2. Solve for transformation parameters 

3. Score parameters with number of inliers 

4. Repeat steps 1-3 N times 

Problem: outliers 

A4 

A5 

B5 

B4 



Example: solving for translation 

A1 

A2 A3 
B1 

B2 B3 

Hough transform solution 
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1. Initialize a grid of parameter values 

2. Each matched pair casts a vote for 

consistent values 

3. Find the parameters with the most votes 

4. Solve using least squares with inliers 

A4 

A5 A6 

B4 

B5 B6 

Problem: outliers, multiple objects, and/or many-to-one matches 



Example: solving for translation 

(tx, ty) 

Problem: no initial guesses for correspondence 
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What if you want to align but have no prior 
matched pairs? 

 

• Hough transform and RANSAC not applicable 

 

• Important applications 

 

Medical imaging: match brain 

scans or contours 

Robotics: match point clouds 



Iterative Closest Points (ICP) Algorithm 

 Goal: estimate transform between two dense sets 
of points 

 
1. Initialize transformation (e.g., compute difference in means 

and scale) 

2. Assign each point in {Set 1} to its nearest neighbor in {Set 2} 

3. Estimate transformation parameters  
– e.g., least squares or robust least squares 

4. Transform the points in {Set 1} using estimated parameters 

5. Repeat steps 2-4 until change is very small 

 

 

 



Example: aligning boundaries 
1. Extract edge pixels 𝑝1. . 𝑝𝑛 and 𝑞1. . 𝑞𝑚  

2. Compute initial transformation (e.g., compute translation and scaling 
by center of mass, variance within each image) 

3. Get nearest neighbors: for each point 𝑝𝑖 
 find corresponding 

match(i) = argmin
𝑗

𝑑𝑖𝑠𝑡(𝑝𝑖, 𝑞𝑗)  

4. Compute transformation T based on matches 

5. Warp points p according to T 

6. Repeat 3-5 until convergence 

p 
q 



Example: solving for translation 

(tx, ty) 

Problem: no initial guesses for correspondence 
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1. Find nearest neighbors for each point 

2. Compute transform using matches 

3. Move points using transform 

4. Repeat steps 1-3 until convergence 



Algorithm Summary 
• Least Squares Fit  

– closed form solution 
– robust to noise 
– not robust to outliers 

• Robust Least Squares 
– improves robustness to noise 
– requires iterative optimization 

• Hough transform 
– robust to noise and outliers 
– can fit multiple models 
– only works for a few parameters (1-4 typically) 

• RANSAC 
– robust to noise and outliers 
– works with a moderate number of parameters (e.g, 1-8) 

• Iterative Closest Point (ICP) 
– For local alignment only: does not require initial correspondences  



Object Instance Recognition 

1. Match keypoints to 
object model 

 

2. Solve for affine 
transformation 
parameters 

 

3. Score by inliers and 
choose solutions with 
score above threshold 

A1 

A2 
A3 

Affine 
Parameters 

Choose hypothesis with max 

score above threshold 

# Inliers 

Matched 

keypoints 

This 

Class 



Overview of Keypoint Matching 

K. Grauman, B. Leibe 
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N pixels 

Af

e.g. color 

Bf

e.g. color 

A1 

A2 A3 

Tffd BA ),(

1. Find a set of    

    distinctive key- 

    points  

3. Extract and  

    normalize the     

    region content   

2. Define a region  

    around each  

    keypoint    

4. Compute a local  

    descriptor from the  

    normalized region 

5. Match local  

    descriptors 



Finding the objects (overview) 

1. Match interest points from input image to database image 

2. Matched points vote for rough position/orientation/scale of 
object 

3. Find position/orientation/scales that have at least three votes 

4. Compute affine registration and matches using iterative least 
squares with outlier check 

5. Report object if there are at least T matched points 

Input 

Image Stored 

Image 



Affine Object Model 

• Accounts for 3D rotation of a surface under 
orthographic projection 

 

 



Affine Object Model 

• Accounts for 3D rotation of a surface under 
orthographic projection 

 

 

What is the minimum number of matched points that we need? 
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Finding the objects (SIFT, Lowe 2004) 
1. Match interest points from input image to database image 

2. Get location/scale/orientation using Hough voting 

– In training, each point has known position/scale/orientation 
wrt whole object 

– Matched points vote for the position, scale, and orientation 
of the entire object 

– Bins for x, y, scale, orientation 
• Wide bins (0.25 object length in position, 2x scale, 30 degrees orientation) 

• Vote for two closest bin centers in each direction (16 votes total) 

3. Geometric verification 

– For each bin with at least 3 keypoints 

– Iterate between least squares fit and checking for inliers and 
outliers 

4. Report object if > T inliers (T is typically 3, can be computed to 
match some probabilistic threshold) 



Examples of recognized objects 


