

The blue and green colors are actually the same

http://blogs.discovermagazine.com/badastronomy/2009/06/24/the-blue-and-the-green/

Previous Lectures

- We've now touched on the first three chapters of Szeliski.
 - 1. Introduction
 - 2. Image Formation
 - 3. Image Processing
- Now we're moving on to
 - 4. Feature Detection and Matching
 - Multiple views and motion (7, 8, 11)

Edge / Boundary Detection

Szeliski 4.2

Computer Vision CS 143, Brown

James Hays

Edge detection

- Goal: Identify sudden changes (discontinuities) in an image
 - Intuitively, most semantic and shape information from the image can be encoded in the edges
 - More compact than pixels
- Ideal: artist's line drawing (but artist is also using object-level knowledge)

Why do we care about edges?

Extract information, recognize objects

 Recover geometry and viewpoint

Origin of Edges

Edges are caused by a variety of factors

Source: Steve Seitz

Characterizing edges

An edge is a place of rapid change in the image intensity function

Intensity profile

With a little Gaussian noise

Source: D. Hoiem

Effects of noise

- Consider a single row or column of the image
 - Plotting intensity as a function of position gives a signal

Where is the edge?

Effects of noise

- Difference filters respond strongly to noise
 - Image noise results in pixels that look very different from their neighbors
 - Generally, the larger the noise the stronger the response
- What can we do about it?

Solution: smooth first

• To find edges, look for peaks in $\frac{d}{dx}(f*g)$

Source: S. Seitz

Derivative theorem of convolution

- Differentiation is convolution, and convolution is associative: $\frac{d}{dx}(f*g) = f*\frac{d}{dx}g$
- This saves us one operation:

Source: S. Seitz

Derivative of Gaussian filter

Tradeoff between smoothing and localization

 Smoothed derivative removes noise, but blurs edge. Also finds edges at different "scales".

Designing an edge detector

- Criteria for a good edge detector:
 - Good detection: the optimal detector should find all real edges, ignoring noise or other artifacts
 - Good localization
 - the edges detected must be as close as possible to the true edges
 - the detector must return one point only for each true edge point
- Cues of edge detection
 - Differences in color, intensity, or texture across the boundary
 - Continuity and closure
 - High-level knowledge

Canny edge detector

- This is probably the most widely used edge detector in computer vision
- Theoretical model: step-edges corrupted by additive Gaussian noise
- Canny has shown that the first derivative of the Gaussian closely approximates the operator that optimizes the product of signal-to-noise ratio and localization

J. Canny, <u>A Computational Approach To Edge Detection</u>, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

Example

original image (Lena)

Derivative of Gaussian filter

Compute Gradients (DoG)

X-Derivative of Gaussian

Y-Derivative of Gaussian

Gradient Magnitude

Get Orientation at Each Pixel

- Threshold at minimum level
- Get orientation

theta = atan2(gy, gx)

Non-maximum suppression for each orientation

At q, we have a maximum if the value is larger than those at both p and at r. Interpolate to get these values.

Source: D. Forsyth

Sidebar: Interpolation options

- imx2 = imresize(im, 2, interpolation_type)
- 'nearest'
 - Copy value from nearest known
 - Very fast but creates blocky edges
- 'bilinear'
 - Weighted average from four nearest known pixels
 - Fast and reasonable results
- 'bicubic' (default)
 - Non-linear smoothing over larger area (4x4)
 - Slower, visually appealing, may create negative pixel values

Before Non-max Suppression

After non-max suppression

Hysteresis thresholding

Threshold at low/high levels to get weak/strong edge pixels

Do connected components, starting from strong edge pixels

Hysteresis thresholding

- Check that maximum value of gradient value is sufficiently large
 - drop-outs? use hysteresis
 - use a high threshold to start edge curves and a low threshold to continue them.

Final Canny Edges

Canny edge detector

- 1. Filter image with x, y derivatives of Gaussian
- 2. Find magnitude and orientation of gradient
- 3. Non-maximum suppression:
 - Thin multi-pixel wide "ridges" down to single pixel width
- 4. Thresholding and linking (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them

MATLAB: edge(image, 'canny')

Effect of σ (Gaussian kernel spread/size)

The choice of σ depends on desired behavior

- large σ detects large scale edges
- small σ detects fine features

Source: S. Seitz

Where do humans see boundaries?

image

gradient magnitude

Berkeley segmentation database:

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

pB boundary detector

pB Boundary Detector

Results

Results

For more:

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/bench/html/108082-color.html

45 years of boundary detection

State of edge detection

- Local edge detection works well
 - But many false positives from illumination and texture edges
- Some methods to take into account longer contours, but could probably do better
- Few methods that actually "learn" from data. Your project 5, Sketch Tokens, will do so.
- Poor use of object and high-level information

Style and abstraction in portrait sketching, Berger et al. SIGGRAPH 2013

• Learn from artist's strokes so that edges are more likely in certain parts of the face.

Questions