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Feature extraction: Corners

9300 Harris Corners Pkwy, Charlotte, NC




Why extract features?

« Motivation: panorama stitching
 We have two images — how do we combine them?




Local features: main components

1) Detection: Identify the
Interest points

2) Description: Extract vector
feature descriptor X
surrounding each interest
point.

3) Matching: Determine
correspondence between
descriptors in two views

Kristen Grauman



Characteristics of good features

Repeatability

« The same feature can be found in several images despite geometric
and photometric transformations

Saliency
 Each feature is distinctive

« Compactness and efficiency
« Many fewer features than image pixels

Locality

» A feature occupies a relatively small area of the image; robust to
clutter and occlusion



Goal: Iinterest operator repeatabillity

« We want to detect (at least some of) the
same points in both images.
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No chance to find true matches!

* Yet we have to be able to run the detection
procedure independently per image.

Kristen Grauman



Goal: descriptor distinctiveness

* We want to be able to reliably determine
which point goes with which.

« Must provide some invariance to geometric
and photometric differences between the two
Views.

Kristen Grauman



Applications

Feature points are used for:
* Image alignment
3D reconstruction
Motion tracking
Robot navigation
Indexing and database retrieval
Obiject recognition




Local features: main components

1) Detection: Identify the
Interest points

2) Description:Extract vector
feature descriptor
surrounding each interest
point.

3) Matching: Determine
correspondence between
descriptors in two views



Many Existing Detectors Available

Hessian & Harris ‘Beaudet ‘78], [Harris ‘88]
Laplacian, DoG Lindeberg 98], [Lowe 1999]
Harris-/Hessian-Laplace ‘Mikolajczyk & Schmid ‘01]
Harris-/Hessian-Affine ‘Mikolajczyk & Schmid ‘04]
EBR and IBR Tuytelaars & Van Gool ‘04]
MSER ‘Matas ‘02]

Salient Regions Kadir & Brady ‘01]

Others...
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* What points would you choose?

Kristen Grauman



Corner Detection: Basic Idea

« We should easily recognize the point by
looking through a small window

« Shifting a window in any direction should
give a large change in intensity

“flat” region: “edge”: ‘corner’;
no change in no change significant
all directions along the edge change in all

direction directions

Source: A. Efros



Corner Detection: Mathematics

Change in appearance of window w(X,y)
for the shift [u,V]:

E(u, v)




Corner Detection: Mathematics

Change in appearance of window w(X,y)
for the shift [u,V]:

E(u, v)




Corner Detection: Mathematics

Change in appearance of window w(X,y)
for the shift [u,V]:

E(u,v) =) WX, y) 1(X+u,y+V)-— I\(x, y)
function intensity

Window function W(X,Y) = P —.

(Intensity)

1 in window, O outside Gaussian

Source: R. Szeliski



Corner Detection: Mathematics

Change in appearance of window w(X,y)
for the shift [u,V]:

We want to find out how this function behaves for

small shifts
E(u, v)
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Corner Detection: Mathematics

Change in appearance of window w(X,y)
for the shift [u,V]:

E(U,V) = > WX Y) T(X+U,y+Vv)—1(xy)

We want to find out how this function behaves for
small shifts

Local quadratic approximation of E(u,v) in the

neighborhood of (0,0) is given by the second-order
Taylor expansion:

E 0,0 Euu O’O EUV O’O
E(U,v)~ E(0,0)+[u V]{EUEO oﬂ%[” V]{E Eo o; E EO Oﬂm



Corner Detection: Mathematics
E(u,v)=> w(x,y) 1(x+u,y+Vv)—1(x,Y) :
X,y

Second-order Taylor expansion of E(u,v) about (0,0):

Eu(o,oq 1 {Euu(o,c» Euv<o,0>}{u}

+—[u v]
E, (0,0) E,,(00) E,(0,0)] v

E(u,v) = E(0,0) +[u V]{ >

E,(u,v) =Y 2w(x, y) [(x+u,y +v) = 1(x,y) I, (x+u,y+V)
E, (u,v) =§2w(x, VI (X+U,y+Vv)l (X+U,y+V)

+%2vv(x, V) BOx+u, y+v) = 106, y) 1, (x+u, y +v)
E,, (U,v) :§2w(x, I, (X+Uu, y +V) 1L (X+U, y+V)

+> 2w(x, y) f(x+u, y+v) = 1(x, y) L, (X+U, y +V)



Corner Detection: Mathematics
E(u,v)=> w(x,y) 1(x+u,y+Vv)—1(x,Y) :
X,y

Second-order Taylor expansion of E(u,v) about (0,0):

E,(00] 1, [E,00) E,©00]u

E(u,v) ~ E(0,0)+[u V]{E (0 OJ+2[u v]{E 00) E. (0 O)}{v}
E(0,00=0
E, (0,0)=0
E, (0,00=0

E,,(0,0) = 2w(x, y)I, (X, y)1,(X, ¥)
E,.(0,0) = > 2w(x, y)I, (x, )1, (X, y)

E.,(0,0) = > 2w(x, y)I (X, V)1, (X, y)



Corner Detection: Mathematics

E(u,v)=> w(x,y) 1(x+u,y+Vv)—1(x,Y) :

Second-order Taylor expansion of E(u,v) about (0,0):

UV S ol k) I K)
- EQ0)=0
E,(0,0)=0
E,(0,0)=0

E,,(0,0) = 2w(x, y)I, (X, y)1,(X, ¥)
E,.(0,0) = > 2w(x, y)I, (x, )1, (X, y)

E.,(0,0) = > 2w(x, y)I (X, V)1, (X, y)
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Corner Detection: Mathematics

The quadratic approximation simplifies to

where M is a second moment matrix computed from image
derivatives:

|\ >nn. LI, | _ Iy _ T
M= [ZIny ZIyIZ] _Z[Iy][lx il =2 VIV



Corners as distinctive interest points

I I
M:ZW(X,y) X" X X"y

2 X 2 matrix of image derivatives (averaged in
neighborhood of a point).
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Notation:




Interpreting the second moment matrix

The surface E(u,v) is locally approximated by a
quadratic form. Let’s try to understand its shape.




Interpreting the second moment matrix

First, consider the axis-aligned case
(gradients are either horizontal or vertical)

12,
M :Zw(x,y) » |2y
X,y y

Xy

If either A 1s close to O, then this Is not a corner, so
look for locations where both are large.



Interpreting the second moment matrix

u
:| = const

Consider a horizontal “slice” of E(u, v): [u v] M {v

This Is the equation of an ellipse.

N\E\
f v P X )7
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Interpreting the second moment matrix

u
:| = const

Consider a horizontal “slice” of E(u, v): [u v] M {v

This Is the equation of an ellipse.
0
Diagonalization of M: M=R™ & R
0 A4

The axis lengths of the ellipse are determined by the
eigenvalues and the orientation is determined by R

direction of the
fastest change

direction of the
slowest change



Visualization of second moment matrices




Visualization of second moment matrices
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Interpreting the eigenvalues

Classification of image points using eigenvalues

of M:
Ay




Corner response function

R=det(M)—atrace(M)’ = 44, —a(4, + 4,)°

a. constant (0.04 to 0.06)




Harris corner detector

1) Compute M matrix for each image window to
get their cornerness scores.

2) Find points whose surrounding window gave
large corner response (f> threshold)

3) Take the points of local maxima, I.e., perform
non-maximum suppression

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.”
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.



http://www.bmva.org/bmvc/1988/avc-88-023.pdf

Harris Detector: Steps




Harris Detector: Steps

Compute corner response R
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Harris Detector: Steps

Take only the points of local maxima of R




Harris Detector: Steps




Invariance and covariance

« We want corner locations to be invariant to photometric
transformations and covariant to geometric transformations
« Invariance: image is transformed and corner locations do not change

« Covariance: if we have two transformed versions of the same image,
features should be detected in corresponding locations




Affine intensity change

RA

threshold

=) [ | >al+b

« Only derivatives are used =>
Invariance to intensity shiftl > 1 +Db

* Intensity scaling: 1 > al
R;
N A/\ A
\V,

/

W\ VAU

X (image coordinate) X (image coordinate)

Partially invariant to affine intensity change




Image translation
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™

* Derivatives and window function are shift-invariant

Corner location Is covariant w.r.t. translation




Image rotation
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Second moment ellipse rotates but its shape
(i.e. eigenvalues) remains the same

Corner location Is covariant w.r.t. rotation




Scaling

— ——
A Iy
Corner
All points will
be classified
as edges

Corner location is not covariant to scaling!




