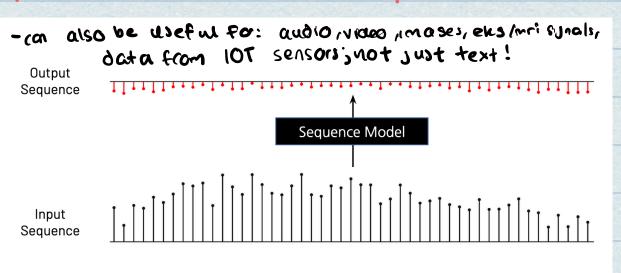
Agenda:

- > Intro to Sequence modeling
- -> Brief overview of RNNs
- -> overview of Transformers and self Attention
- > multinead Attention
- > revisiting Tensor nodel prallelism & megastron-LM.

*Intro to sequence modeling

- our new powerful Lms con.
 - 1) summarize large volumes of text
 - 2) Answer questions about world
 - 3) carry out long conversation
- in general we can think of these tasks as

"sequence modeling" - mapping input sequences to output sequences:



* Today:	sequence	nodels for	I asuage		
INPUT seq		LM	own	<u>o</u> wtput seg	
	r in the		"Hax is a	book by Dr. Seuis"	
"tum	off the "		"lignts"		
	> model ne	ed s:			
	-woc	ld knowledge			
	- com	mon rene			
	-ling	Motic knowle	296		
Over	sequence	es of to ken	8	tribution okend som Xc	
		assigns seque			
		probability in			
		vocab is: [va, the 1:	
	P	c"turn of	the lish	150. < ("14	
	PC	"Off tuen	the lights	(''∪'') → . 03 (') → . 002	
		and	so on		
+ we c	could "	rodel a TC	DINT DIS	TRIBUTION:	
- cv	noose so	me length	1		

Thave Lm learn joint distribution of fokus over variables \$1, xz ... &c:

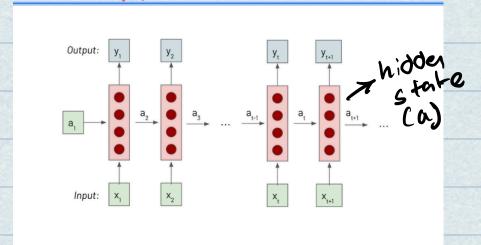
> p C" | like to eat cam") > pr L=

→PC"The movie was very fung") > PC" The movie was very fung") > S

* But this has 3 cons:

- 1) Ineffective—we typically want to sample sequences of different lenstons 2) Too many option—as length increases, #of possible sequences grow(nord to represent space)
- 3) Imprecise: probabilities will represent sequences "on average" > not best overall sequence

* Another Approach: RNNs - sota in 2016



cs2295 slides

- idea: capture "history" of all previously
seen tokens to predict next tohn
- update HIDDEN STATE (a₁, a₂... a₊₁₁):
- ure Hs. to generate output
tokens

* challenge 1: modeling long-rosse dependencies

"The output: y_1 y_2 y_3 y_4 $y_{4,1}$ $y_{4,1}$

rituation"

* challenge 2: Difficult to train!

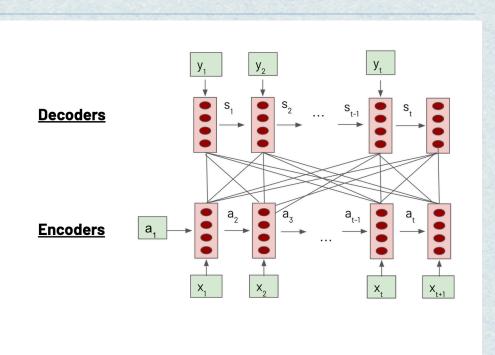
-recall: backprop needs to go through many layer

-easy to get into a situation where model becomes unstable or STOPS learning scadients too lape too small

*challenge3: FW/BW passes CAN'T be proded:

- each times to predo to be processed before we move onto next ctep

· idea: all tokens snould interact reprecentation of other tokens (nelps w/ challense 1)



+ cuccent manstream approach: TRANSFORMERS

1) wes at tention idea 2) poralleliz 3) in last 7 years - we've soften befrer at training

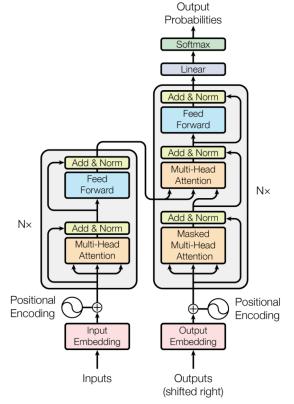
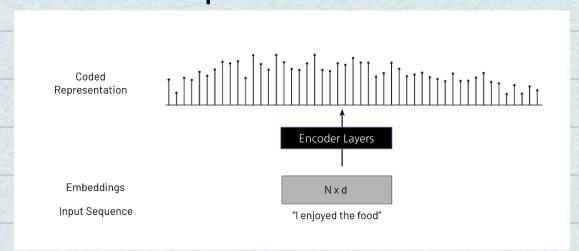


Figure 1: The Transformer - model architecture.

#from original google paper on transformers google et. ale

+Before we get into-specifics, we can use transformers in a few dil. ways:

· Encoder only



example:

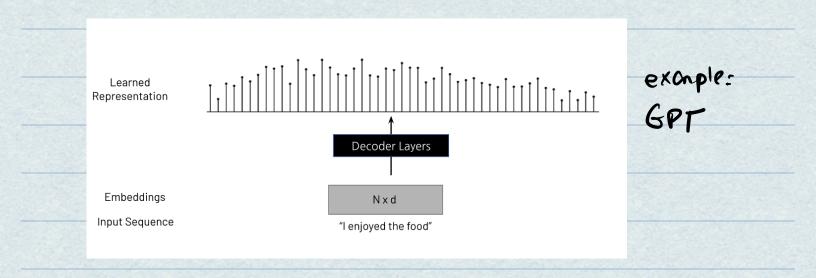
BERT

- purpose: use final representation to perform classification les, sentiment analysis) or

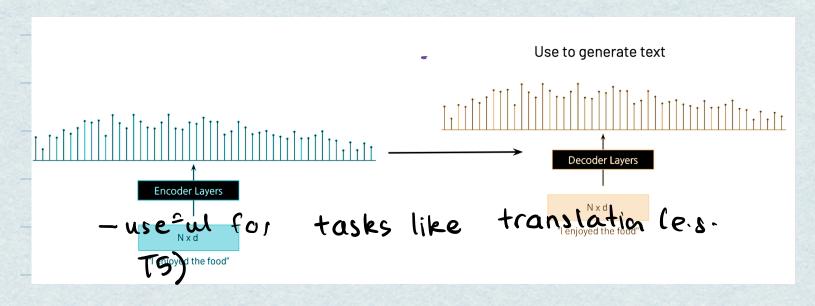
get good "representations of requence > create embeddings of adocument

- processes text bidirectionally
- -training objective: spa prediction- mask some words so model can predict
- · Decoder only
 - -purpose: use final representation to senerate fext
 - -training objective: next token prediction
 - -processes text in one direction (for left to

Ciphe):

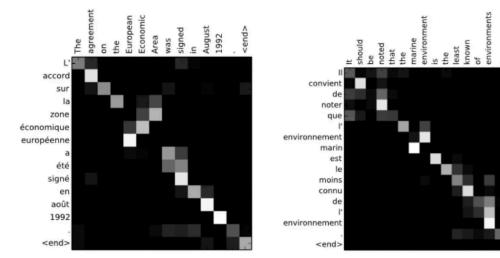


· or botn (en coder-decoder):

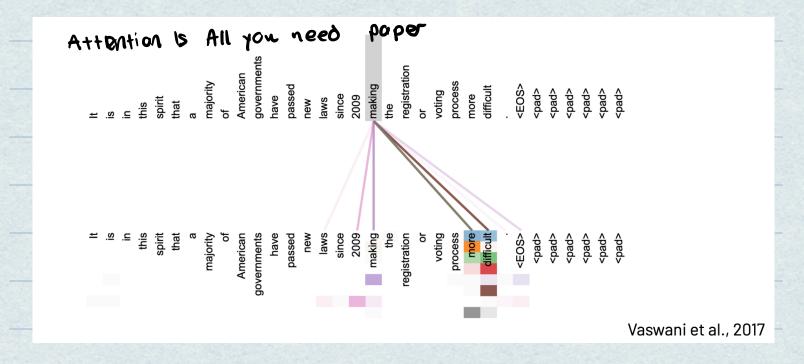


* Building Intuition for Attention:

- the meaning of "frome" depends on context:
 - . "The counselor helped frame the situation"
 - · "I hung up the photo frame"
- Attention op computes now much each token
- is influenced by other tokens:



Bandanau et. al [Neural machine translation...)



*Lct's try to break down self attention

 \rightarrow given a sequence $(X_1, X_2...X_n)$ "the counselor helped frame the

situation"

→ for each item xi, compute how much it should "pay attention" to

each value in the sequence

-> To do this. for each token xi: -> treat it as a "query token" -> map entire sequence to "keys" w/ comes ponoins "raines" -> for query token, find all keys to pay attention to -> and take those keys values cs229s slides $x_i^{NEW} = 0.25 v_2 + 0.45 v_i + 0.3 v_N$ k, **V**₁ J counselor create new version k₂ of X; by combining values at 10me frame probability frame - probabilities calculated w/ query, situation **k**_N

and all keys

* Full Attention Algorithm!

1) Transform each token x; to set:

(multiply by

specific, qi ki vi

pre-trained natrix)

query vector vector

2) compute dot product between qi and all ki's in sequence:

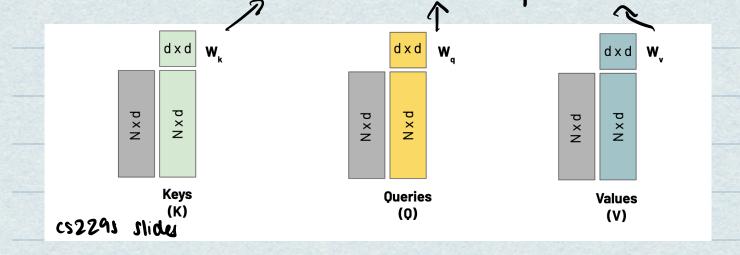
0= [9: k1, 9: k2, 9i. k3, 9: kn]
3) Pass O through softmax to set
probabilities
S = Softmax (O)
4) Take weighted sum of values siven
softnax output: N
$xi^{\text{new}} = \sum_{i=1}^{\infty} Si \cdot vi$
L= 1
+ This is sceaf! We con compute in a batch:
N= sequence lensth/#of to kens in
model input
d = model dimension
→ given sequence (x,xn), model
will get it as an Nxd matrix
of embeddins
<u>→</u>
N J
* Attention step 1: compute all queies, keys, values

-> use matrix multiply to get

query (Q), key (K) and value (V)

Matrices

leonable params



00 we perform "lookup" ad 2) NOW NOW match queries to keys?

> Q=akt matrix multiply:

Note:

- Dutonce btwo ony

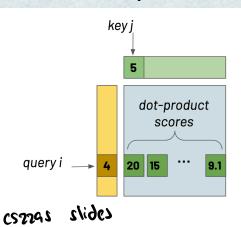
two tokens is now

cseens slibes O(1) us. O(N) in iterating through KNN

- Porallelizable: car compute pairwise interactions in porallod

#3) How do we pick the "best" key

matches for our query? →Dot product results in "scom btwn early token pair Li,j3



K

 $N \times N$ There is a

term between

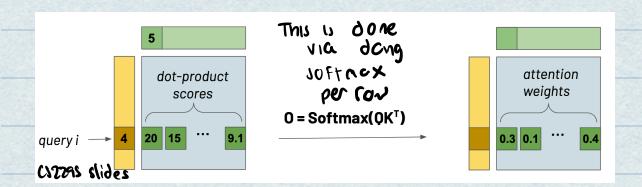
every token in the sequence

0

> now for each query to ken i, we NORMALIZE dot product scores so they sum to 1

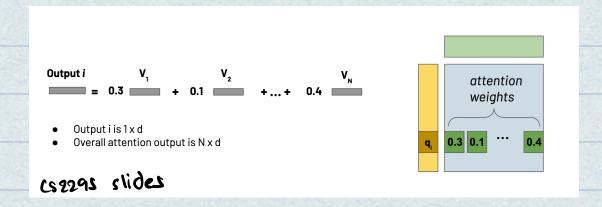
> scores to weights that reflect how much query "i"

matches w/ key "i"



-now: take WEIGHTED sum of relevant tokens, where weights are these aftentia

weights:

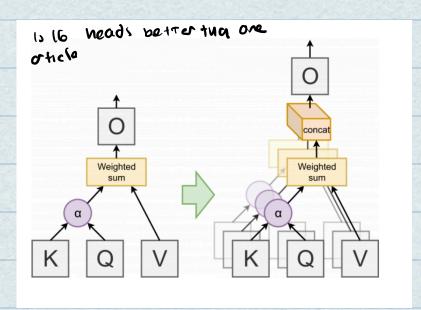


+ What is MULTIHEAD ATTENTION?

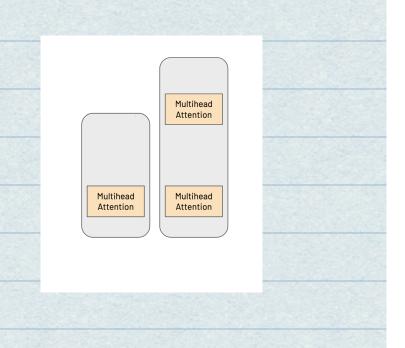
-each head operate on smaller # of dimensions

-if input is d-dimensional, and we have h heads,

each attention op- is over d/n inputs



+ where are we?



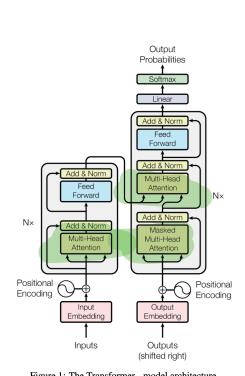
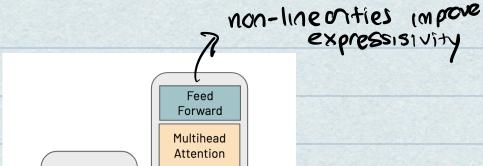


Figure 1: The Transformer - model architecture.

* ADD Feed-forward networks

-> 10 for: we haven't applied non-linearities;

just taken weighted averages



Feed Forward

Multihead Attention

Multihead Attention

+ use stand ord techniques to make oranitectures

stable:

1) Residual connections:

Layer output = Attention output + Att. nput
2) Layer normalization normaliza output to

have zero mea /std 1 to keep scale

maaseabb

3) scale det product: divide attention

weights by sart of modeldas values

one too big otherwise:

Att. Weights = softmax (OKT)

-> problem: we don't know which token

is in each position in our encoding?

The food was **good**. It had enough flavor and was not too expensive. However, the service was **poor**.

Good refers to food and **poor** refers to service.

However,
food had
was It The was and
expensive.
too was good.
flavor service
not the
poor.enough

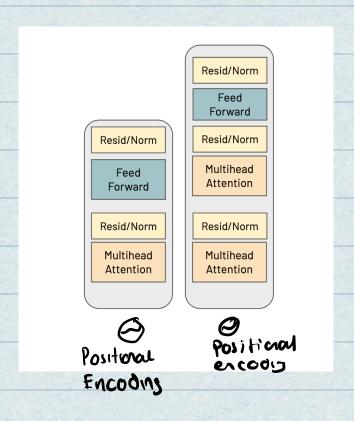
* solution: Add Position Encoding:

(before pawns input through).

Xi = ti + pi

Ly could also concatenate

in practice twey we added



* output layer: (decoder)

- predict "next token from full vocabsize V

wins output repr

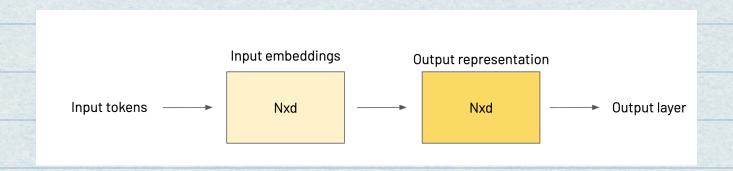
1) output layer u leoned map from

d > V dimension.

5 values associated ul each vocal

2) Add softmax to get scores summers to 1

3) Output town w/ HIGHEST softmax store



* revisiting Tensor model porallelism

in context of transformers (megatron!)

-> feed forward part might include:

- two-layer multi-layer perceptron (MLP)

- MLP = 2 matrix multiplies (GEMR) +

Gelu non-lineary

Y = GeLU (XA)

Z = Dropout (Y)

- Ducuss: should we split A along columns or rows?

General lecture flow:

- Lecture 2 of CS229s 2023, given by Simran Arora: https://docs.google.com/presentation/d/1Pqu-TYLSnL9XNXF6BHIWahEtgNGNbm1lwQzpgxduJJc/edit#slide=id.q2863f73f1c2 0 0
- Transformers and Attention Lecture of CMU 15-442

Images:

- Sequence Modeling: Simran's slides, #7
- RNN breakdowns and challenges: Simran's slides, 34-37
- Attention Figure: Attention is All You need Paper (Vaswani et. Al): https://arxiv.org/pdf/ 1706.03762
- Encoder, Decoder, Encoder-Decoder diagrams: slides 27-29 of simran's lecture
- Heatmap of attention: Neural Machine Translation by Jointly Learning to Align and Translate: https://arxiv.org/abs/1409.0473
- Self attention matrix diagrams: 44-55 of Simran's lecture
- Multi head attention diagram: Are 16 heads better than 1: https://blog.ml.cmu.edu/2020/03/20/are-sixteen-heads-really-better-than-one/
- Transformers Architecture Build Up: Slide 66 end of Simran's lecture

Other references:

Megatron Paper: https://arxiv.org/pdf/2104.04473