Efficient Mixture-of-Experts Models

Trevor Gale

Google DeepMind April 3rd, 2025

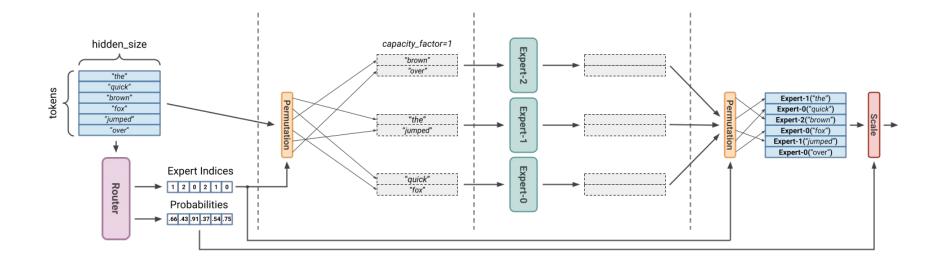
Introduction

I'm a staff research scientist at Google DeepMind, where I've worked for the past 7 years.

My background is in programming and designing hardware accelerators. These days, I lead a team designing a new hardware accelerator. In the past, I've worked on Gemini pre-training and AI codesign.

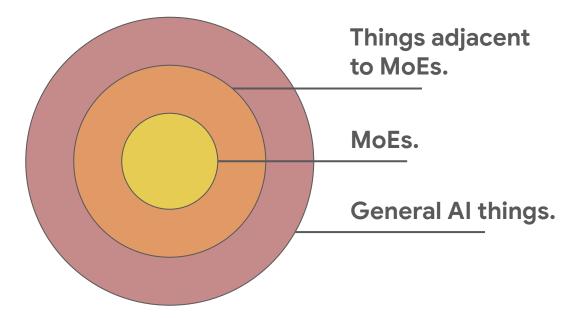
I did my PhD at Stanford, where I worked on sparse neural networks (in the same lab at Deepti!).

Today's Topic: Mixture-of-Experts Layers



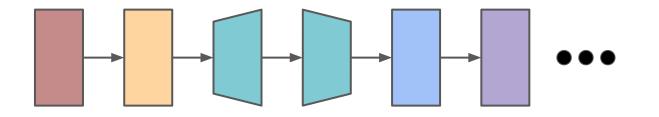
(Shazeer et al., 2017, Lepikhin et al., 2020, Fedus et al., 2021)

Goals for Today



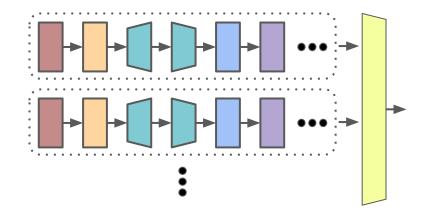
Please ask questions! The value of me being here in person is that we can interact.

Background: Deep Neural Networks



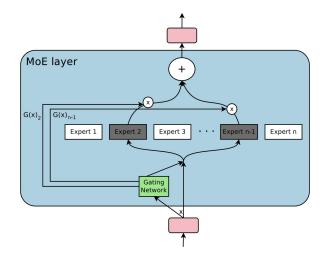
Data flows unconditionally through the layers. Layers compute some nonlinear transformation of the data.

Background: Mixture-of-Experts



Have a bunch of "experts" (models, sub-models). Select between or combine their predictions. Related to ensembling.

Background: Sparsely-Gated Mixture-of-Experts

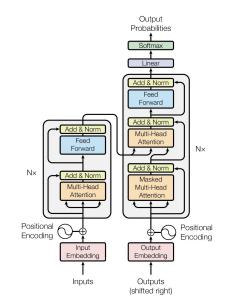


A type of layer containing many sub-layers where tokens are routed to a subset of these "experts". What people mean when they say MoE today.

Predates Transformers! First evaluated on RNNs.

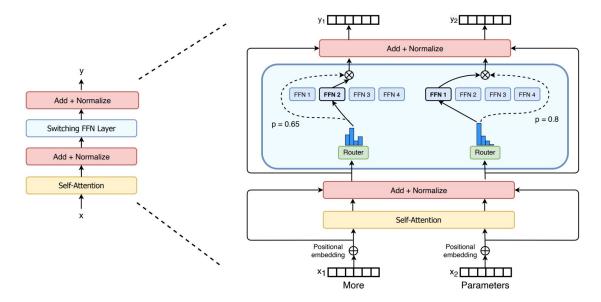
(Shazeer et al., 2017)

Background: Transformers



Attention to model sequences, rather than recurrence or convolution. Designed to use {GPU, TPU} efficiently!

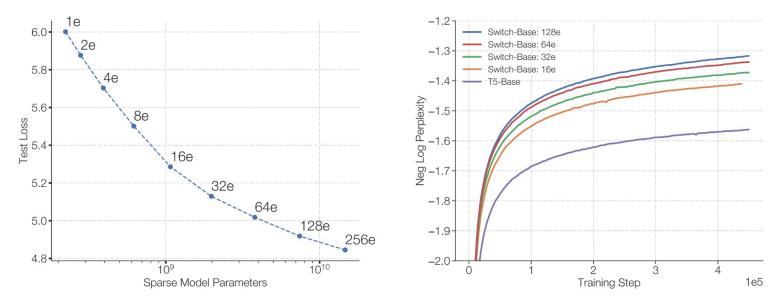
Background: Transformer MoEs



Make Transformer feed-forward layers SG-MoEs. What we all use today.

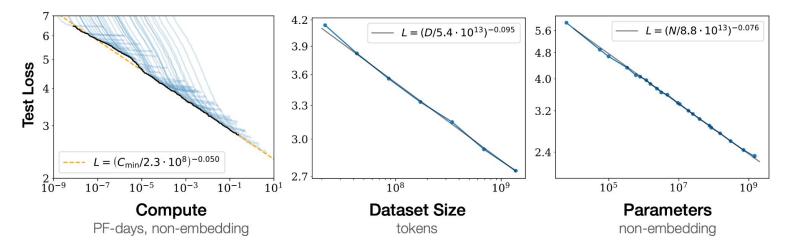
(Lepikhin et al., 2020, Fedus et al., 2021)

MoEs Decouple Compute & Parameter Count



In sparse models, we can configure parameter count and compute per token **independently**. This expanded design space yields **more efficient models**.

Background: Scaling Laws



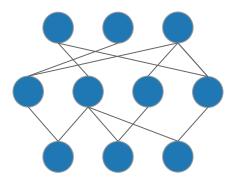
Scaling laws formalize what we knew empirically: quality increases with {compute, data, model} scale. Reflection on the importance of this in AI in "<u>Sutton's Bitter Lesson</u>".

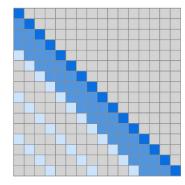
Scaling Laws For Mixture-of-Experts

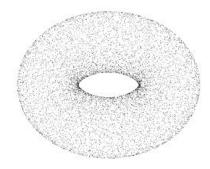


Formalize the efficiency wins of sparse architectures. Framed in terms of "effective parameter count".

There Are Many Kinds of Sparsity







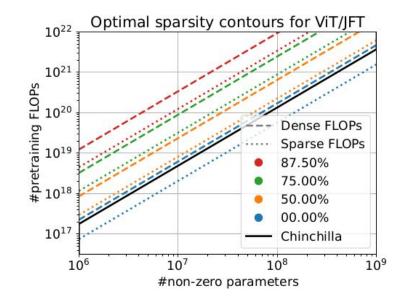
Weight Sparsity Sources: Pruning, sparse training

Activation Sparsity

Sources: <u>ReLU</u>, <u>sparse attention</u>, <u>mixture-of-experts</u> Data Sparsity Sources: <u>Point clouds</u>, <u>graphs</u>, etc.

All of these forms can be static or dynamic (e.g., changing based on the data)!

Other Kinds of Sparsity Show Similar Efficiency



For example, unstructured weight sparsity.

(Frantar et al., 2023)

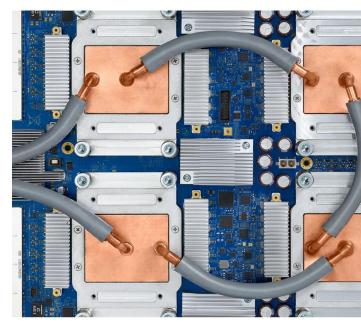
Why Are We Using Mixture-of-Experts Over Them?

MoEs are efficient on {GPU, TPU}.

Two key facts:

- 1. Scaling laws show quality scales with compute.
- {GPU, TPU} maximize compute / watt, compute / mm² with today's semiconductor fabrication technology¹.

We want to use sparse methods that use our accelerators efficiently. **MoEs were designed for this.**

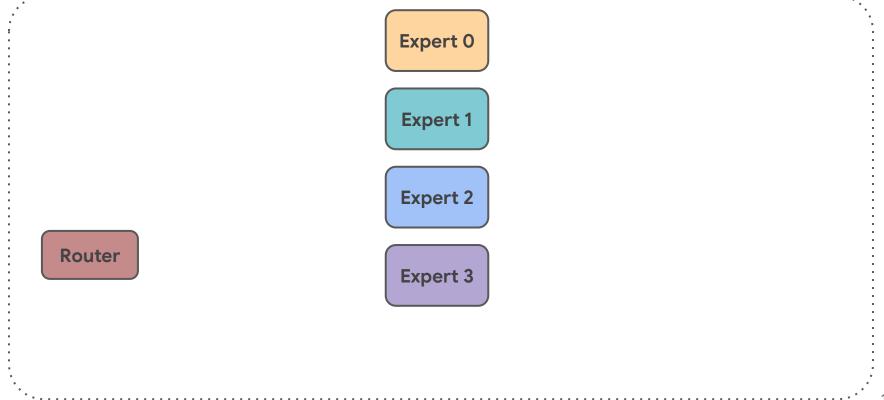


¹Startups like <u>MatX</u> are betting on spending even more die area on compute.

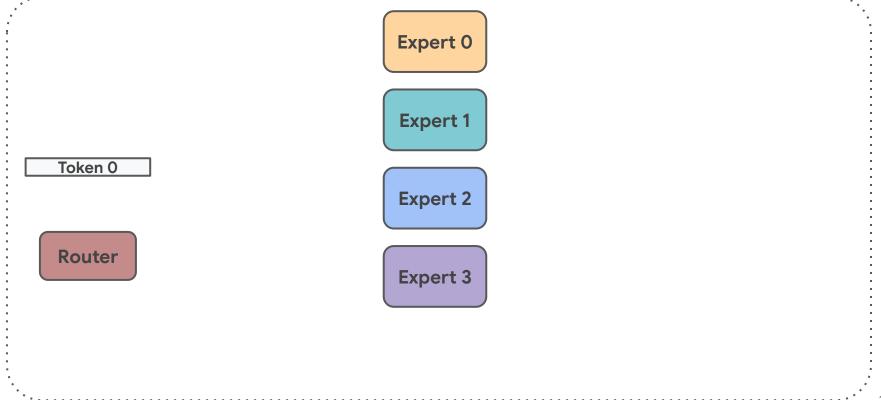
Sigarch.org/the-future-of-sparsity-in-deep-neural-networks

Efficient Mixture-of-Expert Models

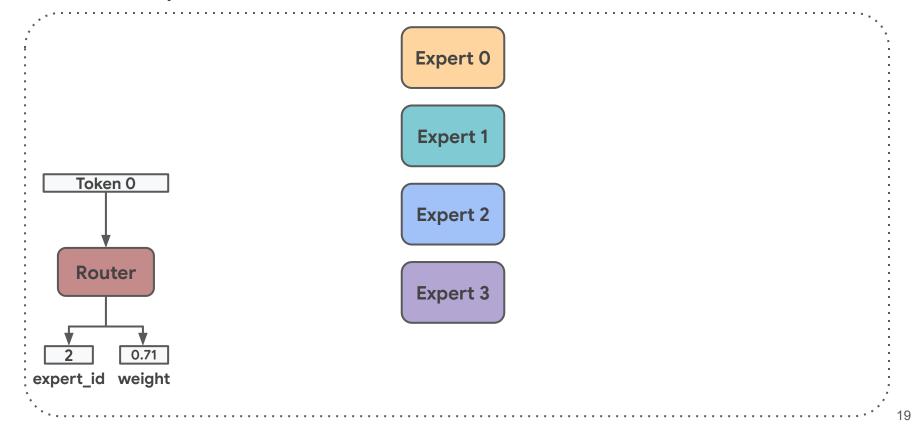
MoE Computation For One Token (1/5)



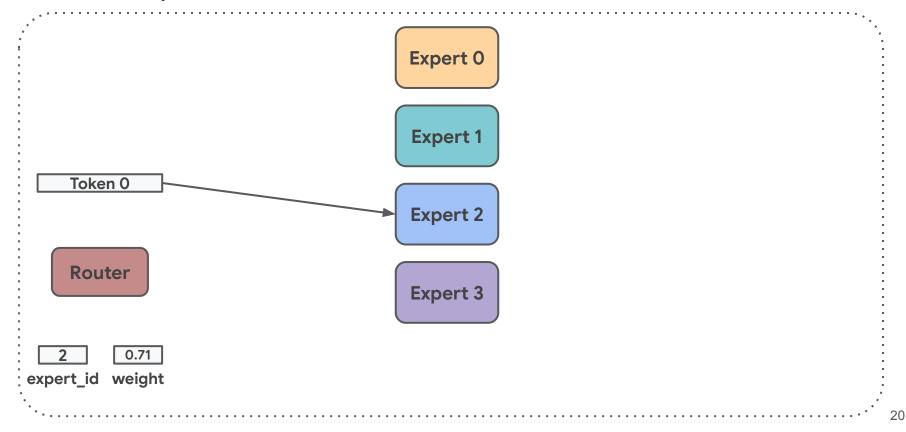
MoE Computation For One Token (2/5)



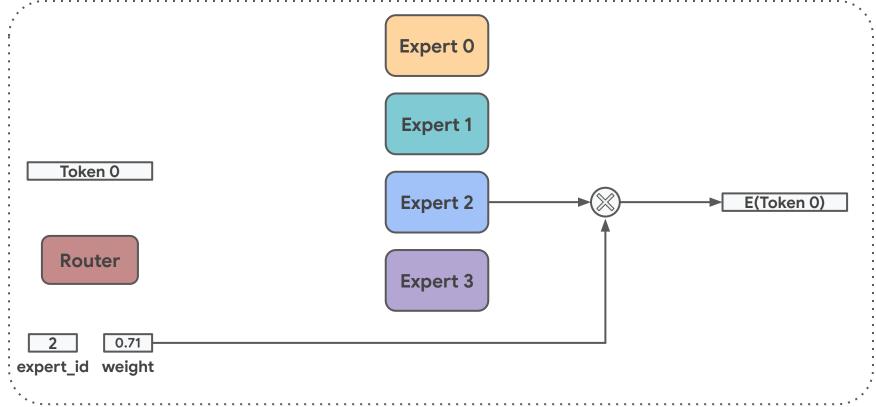
MoE Computation For One Token (3/5)



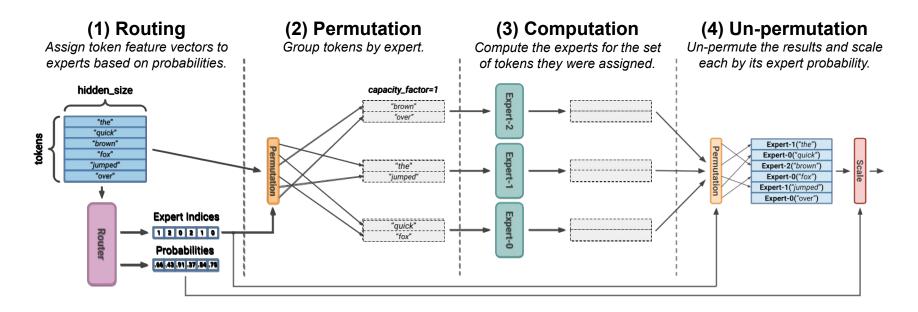
MoE Computation For One Token (4/5)



MoE Computation For One Token (5/5)

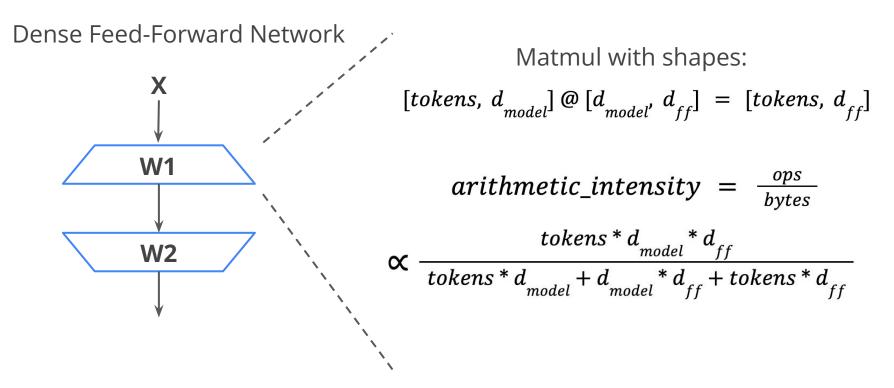


MoE Computation For Many Tokens

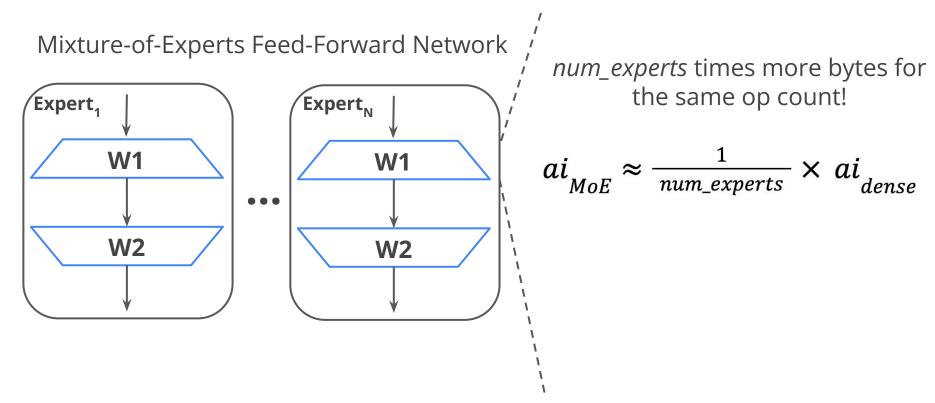


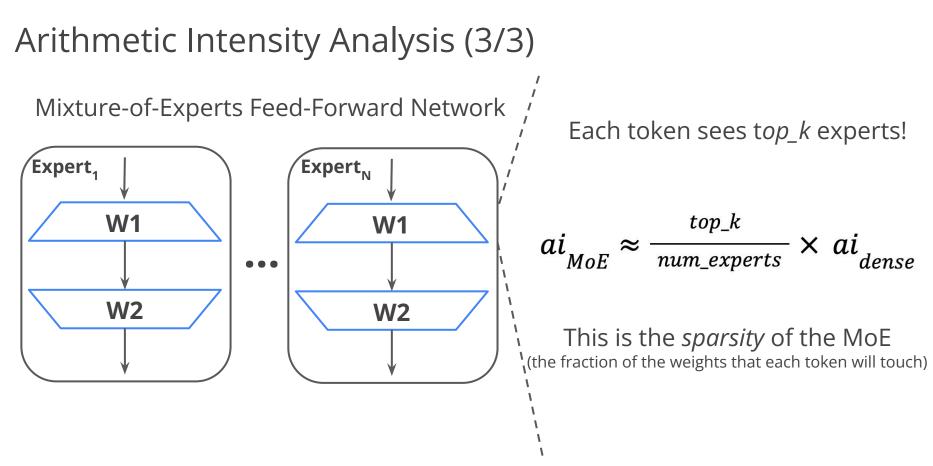
Q: What is the value of grouping tokens by expert?

Arithmetic Intensity Analysis (1/3)

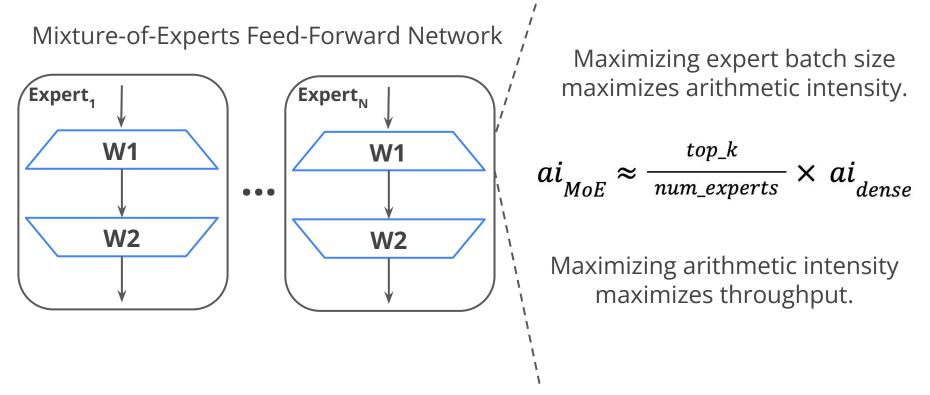


Arithmetic Intensity Analysis (2/3)

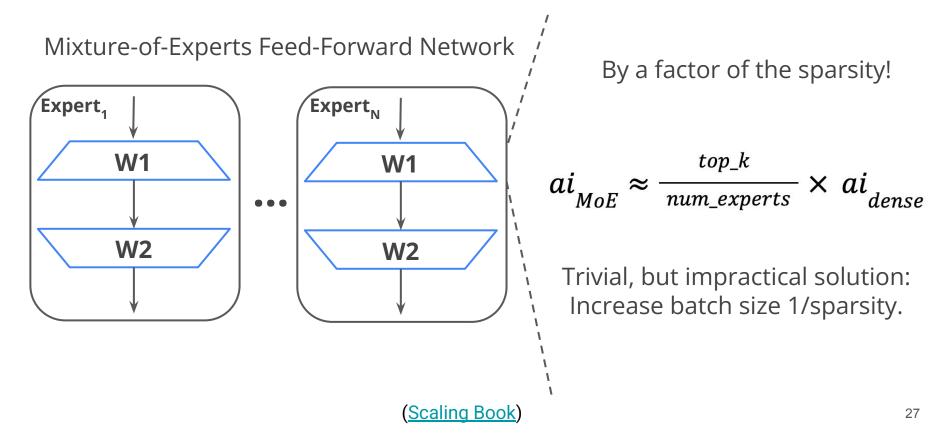




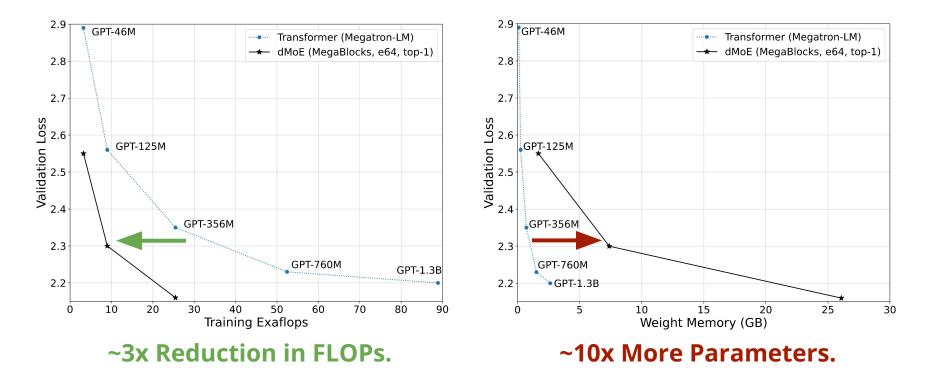
Point 1: Token Grouping Maximizes Per-Expert Batch



Point 2: MoEs Have Lower Arithmetic Intensity Than Dense

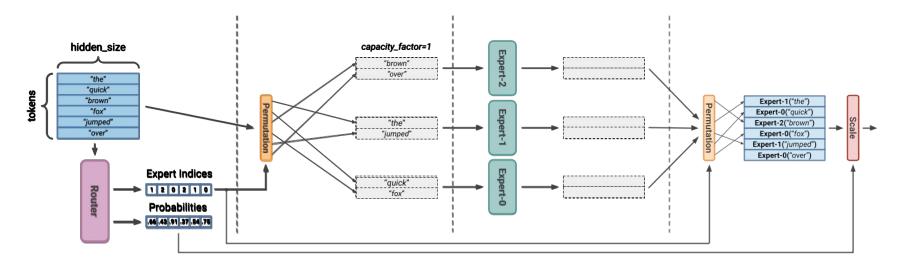


MoEs Trade Compute for Storage



The Tradeoff with MoEs

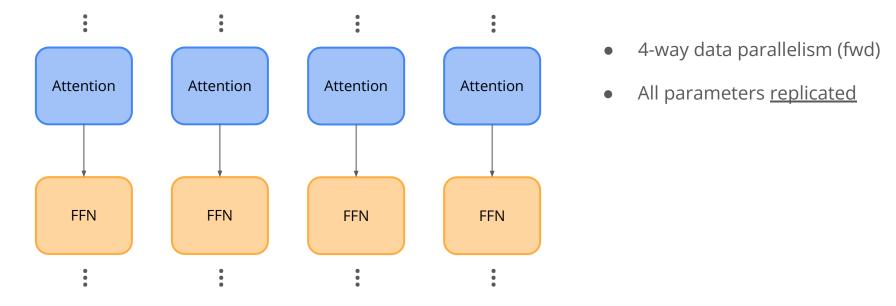
Compute efficient but parameter inefficient, low arithmetic intensity



Expert model parallelism helps address both downsides of MoEs!

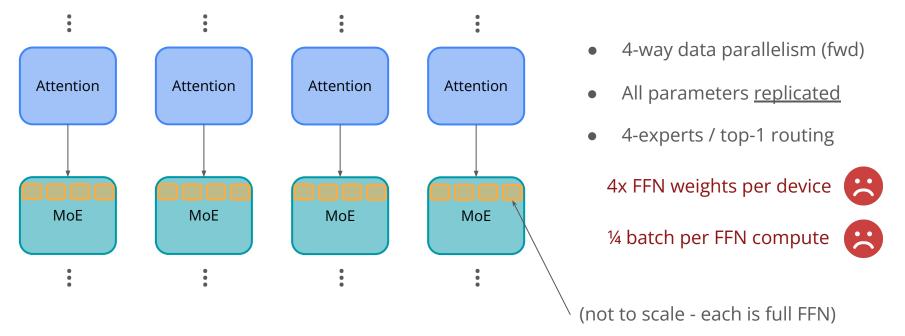
The Value of Expert Model Parallelism (1 of 3)

Scenario: data parallel training/serving a <u>dense Transformer</u>



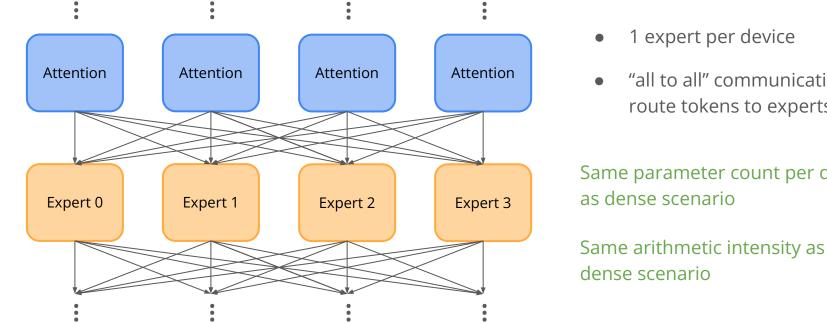
The Value of Expert Model Parallelism (2 of 3)

Scenario: data parallel training/serving a <u>Transformer MoE</u>



The Value of Expert Model Parallelism (3 of 3)

Scenario: expert parallel training/serving a Transformer MoE



- "all to all" communication to route tokens to experts (2x)

Same parameter count per device

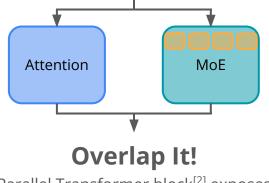
Expert Parallelism Challenge #1: All-to-All Cost

Token routing to remote devices can be (somewhat) expensive.

	Recv 1		Recv 2	Send 1	Recv 3	Send 2		Send 3
Compute 0		Compute 1		Compute 2		Compute 2		

Pipeline It!

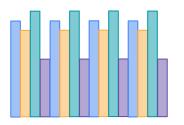
Perform a2a in chunks. Overlap with compute on those chunks^[1].



Parallel Transformer block^[2] exposes independent operations to hide a2a.

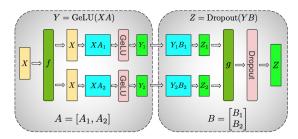
Expert Parallelism Challenge #2: Load Imbalance

Experts can receive different numbers of tokens!



Load Balancing Loss / Jitter

Levers for controlling imbalance at train time. Balance between model quality and step time. Or, newer <u>aux-loss-free load balancing</u>^[1]!

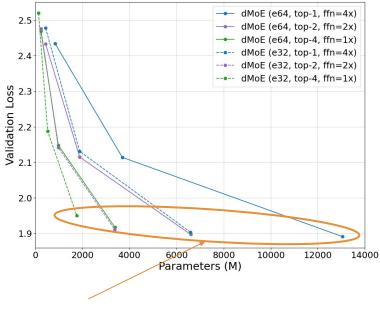


Alternative Sharding

Mixing expert sharding with tensor parallelism^[2] can help reduce load imbalance across devices.

Aside: Model Design Matters a Lot!

Architectural parameters like *d_ff*, *num_experts*, and *top_k* affect parameter efficiency and arithmetic intensity!



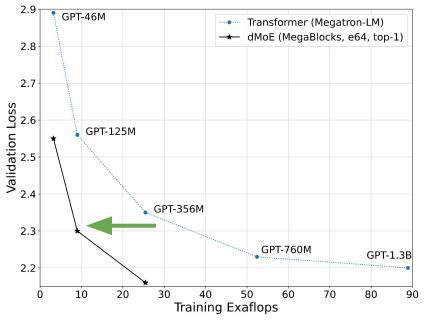
Constant FLOPs!

Scaling laws work for MoEs:

^[1] <u>Unified Scaling Laws for Routed Language Models</u>, Clark et al., 2022

^[2] <u>Scaling Laws for Fine-Grained Mixture of Experts</u>, Krajewski et al., 2024

Not all FLOPs are Created Equal



MoEs are compute efficient!

At training time we realize high % of this theoretical win.

Batch size limitations for serving can change this calculus dramatically.

The "U" of MoE Serving Efficiency (1 of 4)

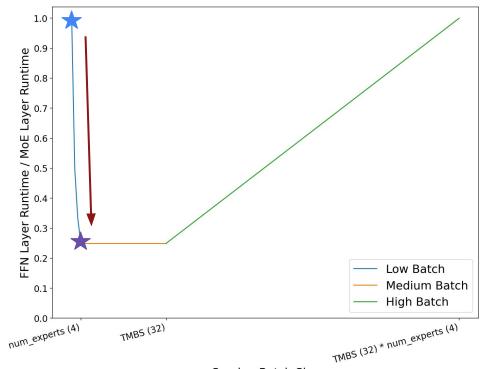
Three Regions of Efficiency.

Region #1: Low Batch Serving

Perf limiter: memory bw loading weights.

Batch=1: MoE/dense touch the same number of weights! 🖈

Batch=num_experts: MoE touches num_experts times as many weights¹.★



Serving Batch Size

TMBS = "Throughput Maximizing Batch Size", i.e., batch size where dense ~saturates math units.

The "U" of MoE Serving Efficiency (2 of 4)

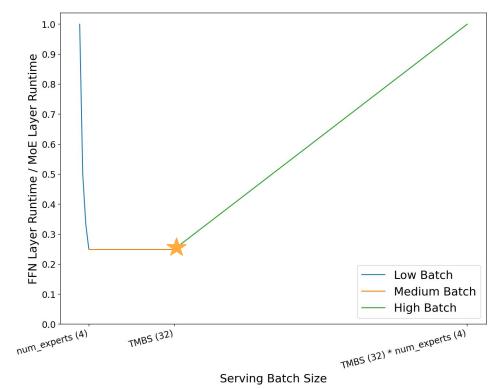
Region #2: Medium Batch Serving

Dense/MoE runtime ~constant as compute utilization ramps up.

Batch=TMBS: Dense FFN ~saturates compute.

Further increases in batch incur proportionate runtime increase for dense.

MoE is not yet saturating compute due to lower arithmetic intensity (1/num_experts)



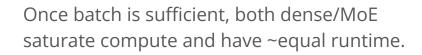
TMBS = "Throughput Maximizing Batch Size", i.e., batch size where dense ~saturates compute.

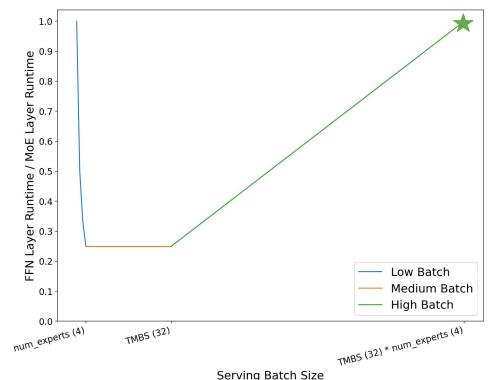
The "U" of MoE Serving Efficiency (3 of 4)

Region #3: High Batch Serving

Dense/MoE runtime ramps up as MoE approaches compute saturation.

Batch=TMBS*num_experts: MoE ~saturates compute.





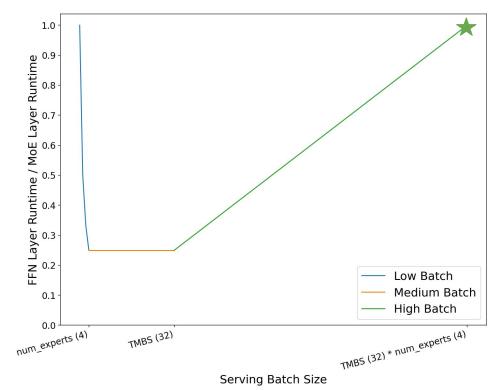
TMBS = "Throughput Maximizing Batch Size", i.e., batch size where dense ~saturates compute.

The "U" of MoE Serving Efficiency (4 of 4)

Commentary:

- This is ~a roofline model for dense/MoE perf. There are factors not modeled.
- The "U" is shallower if you compare e2e runtime.
- MoE is higher quality you might be happy in the medium batch regime.
- *num_experts, top_k, d_ff*, sharding affect the depth/width of this "U".

Latency constraints limit num_experts. ★



TMBS = "Throughput Maximizing Batch Size", i.e., batch size where dense ~saturates compute.

Broader Topics in Al

Commoditization of Frontier Models

Unique Model Capabilities

"Please put a photorealistic dragon flying in the top left corner of the image."

Commoditized Intelligence?

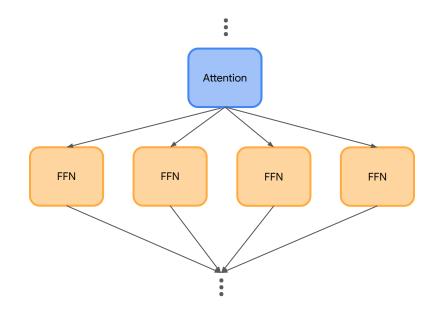
For some applications, I expect the quality we have today is good enough.

(1) We will probably push the cost of these to 0 in the next couple years

(2) CPUs could become relevant for these applications!

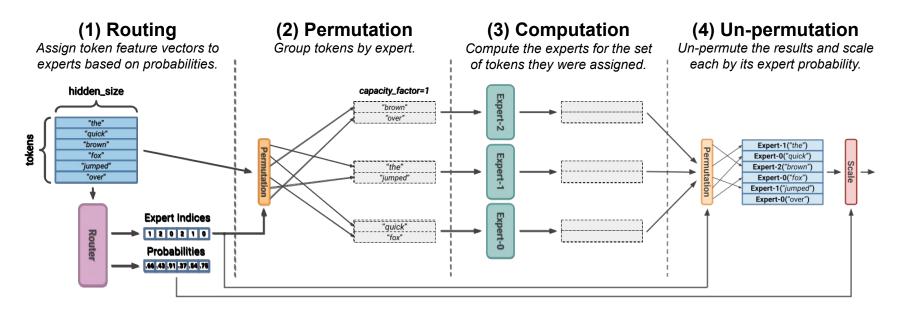
The End

MoEs are just the beginning for sparsity, adaptivity and dynamic computation!



MegaBlocks: Efficient Sparse Training with Mixture-of-Experts

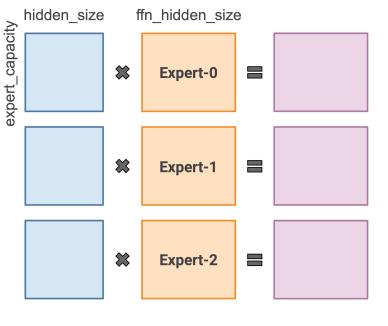
Mixture-of-Experts Layers



As expert count increases, individual expert computation gets smaller. Computing the experts in parallel is key to good performance!

(Shazeer et al., 2017, Lepikhin et al., 2020)

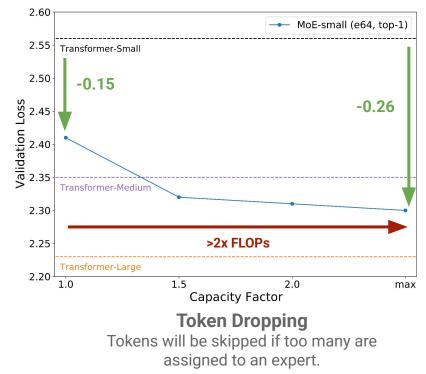
Batched Expert Computation



Batched Matrix Multiplication

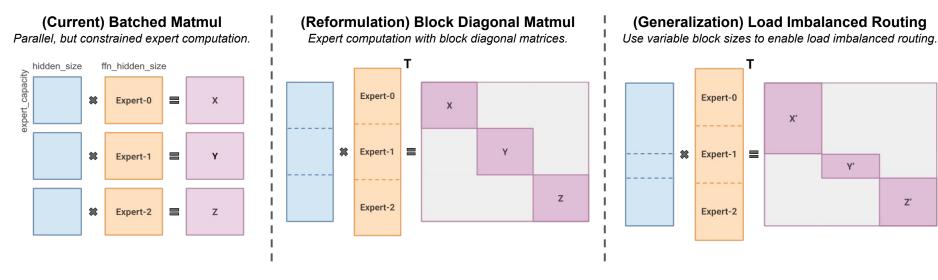
Experts must have same number of tokens! Set via capacity factor hyperparameter.

Bad: Introduces quality-speed tradeoff.



expert_capacity = capacity_factor * num_tokens / num_experts

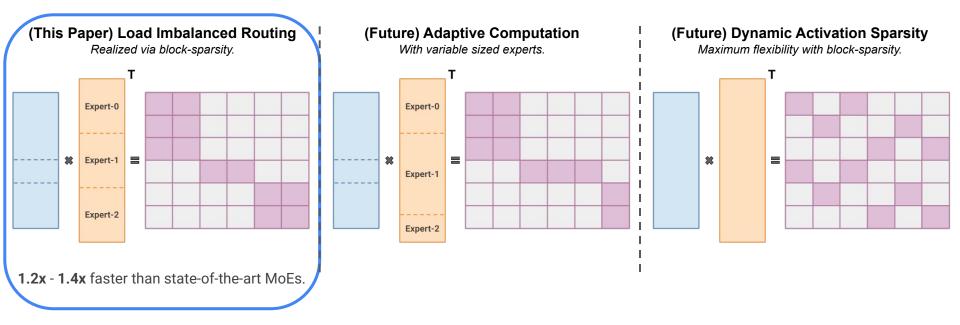
MegaBlocks: Mixture-of-Experts with Structured Sparsity



Y

Z

MegaBlocks: Mixture-of-Experts as Structured Sparsity

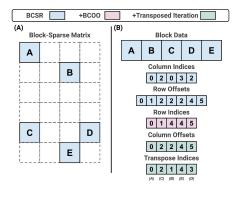


This is the first step towards our goal to improve quality / flop by generalizing MoEs.

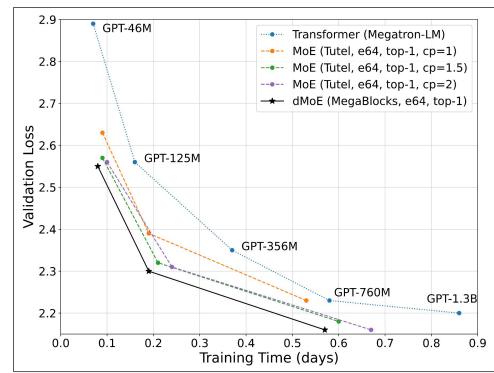
MegaBlocks: Efficient Sparse Training with Mixture-of-Experts

1.2x - 1.4x faster than Tutel MoEs. 1.8x - 2.4x faster than Megatron-LM Transformers.

Enabled by efficient sparse implementation!



More in our paper:



MLSys MegaBlocks: Efficient Sparse Training with Mixture-of-Experts, MLSys'23 Trevor Gale, Deepak Narayanan, Cliff Young, Matei Zaharia

Stanford University

Impact & Adoption

Models Using MegaBlocks

Collaborated with Databricks to train **DBRX** with MegaBlocks.

March 2024: MegaBlocks becomes an official Databricks project => <u>github.com/databricks/megablocks</u>.

<u>Mixtral 8x7B</u> released with MegaBlocks reference implementation.

JetMoE trained with MegaBlocks.

Libraries Using MegaBlocks

github.com/microsoft/tutel

github.com/huggingface/nanotron

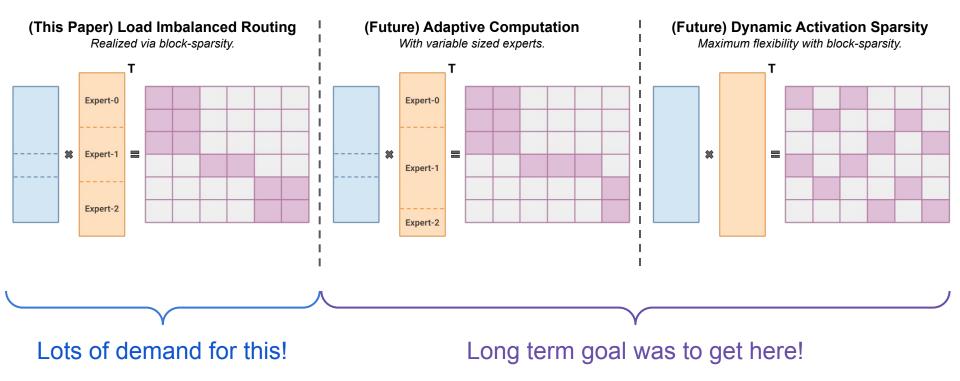
github.com/EleutherAl/gpt-neox

ELEUTHER

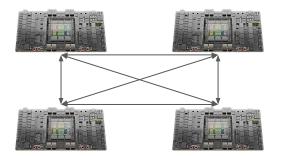
<u>MegaBlocks on TPU (!)</u>

<u>github.com/google/jax</u> => ops, written in Pallas <u>github.com/google/maxtext</u> => dMoE in JAX on TPU <u>github.com/pytorch/xla</u> => dMoE in PyTorch on TPU

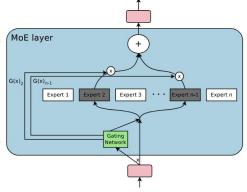
MegaBlocks Was Built to Enable New Forms of Sparsity



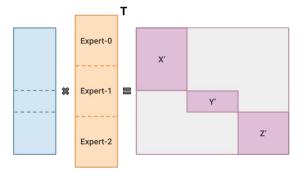
MegaBlocks Is More Than Just Sparse Compute



Dropless Expert Model Parallelism Also other sharding, like FSDP.



Memory Optimizations Manual buffer reuse in backward pass, activation function rematerialization.

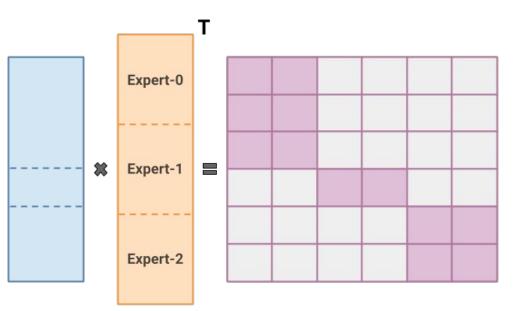


Grouped/Ragged Matmul Block-sparse, but specific to dropless MoE computation. Easier to maintain and port to new architectures (H100, TPU)

Roadmap

0. Introduction

- 1. MoEs with Block Sparsity
- 2. Block-Sparse Kernels for MoEs
- 3. End-to-End Results with dMoEs



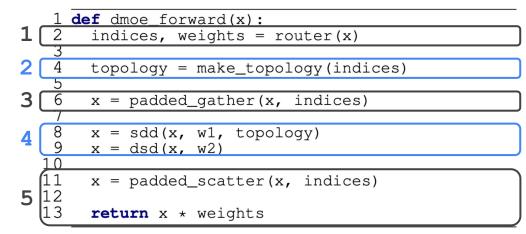
MoEs With Block Sparsity

Dropless-MoEs With Block-Sparsity

Dropless-MoE (dMoE) Computation:

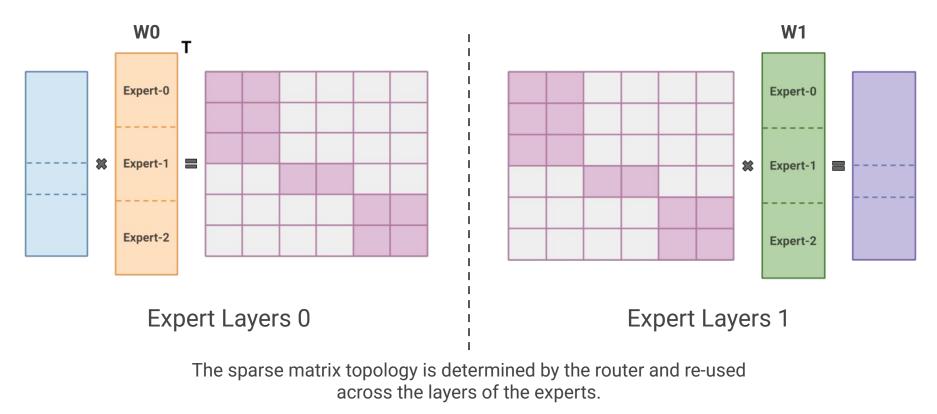
- **1** : Assign tokens to experts.
- 2 : Construct the sparse matrix from router outputs.
- **3** : Group the tokens by expert assignment.
- 4 : Use block-sparse products to compute expert layers.
- **5** : Un-permute and scale by router weights.

Pseudocode for dMoE



(Changes for dMoE highlighted in blue)

Multi-Layer Expert Computation



Block-Sparse Kernels for MoEs

Block-Sparse Kernels for MoEs

	For high throughput.	Fwd + bwd passes.	No token dropping.	Changes every use.
Library	Large Blocks	Transposition	Load Imbalance	Fast Construction
cuSPARSE			8	
Triton Blocksparse				

cuSPARSE not an option: no transposes + ELLPACK format.

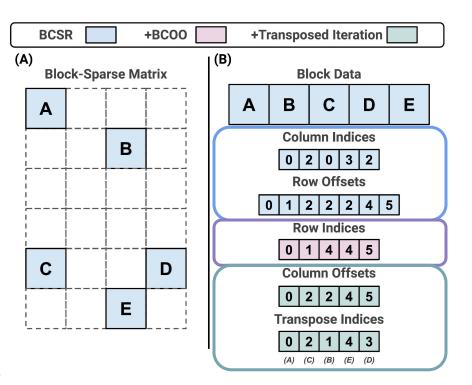
Blocksparse does expensive preprocessing: 5-10x slower than dense if not amortized.

Our Solution: Hybrid Block-Sparse Format

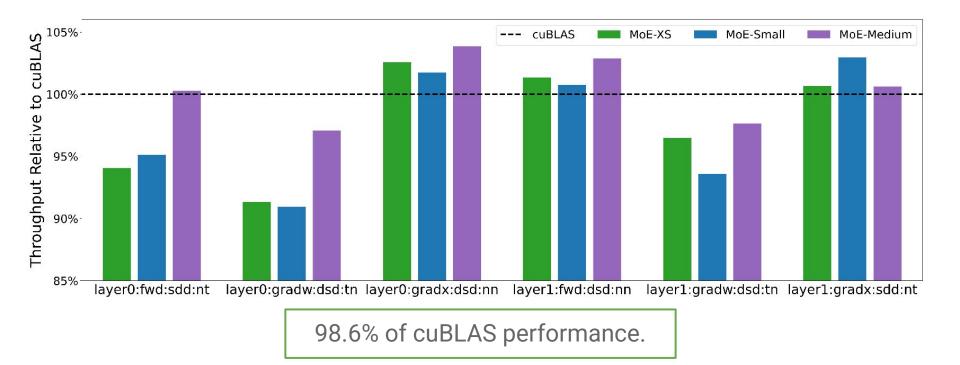
Many "views" of the sparse matrix:

- **Blocked-CSR: sparse inputs**
- **Blocked-COO: sparse outputs**
- Transpose Index: transposed sparse inputs

Metadata is cheap to compute and store: <0.1% storage overhead for 128x128 blocks



MegaBlocks Block-Sparse Kernels



End-to-End Results

Evaluation Details

MegaBlocks is built on Megatron-LM + PyTorch.

Models:

Transformers-MoEs with 64-experts and top-1 routing.

Baselines:

MoE: Tutel (+ Megatron-LM) Dense: Megatron-LM

Training:

10B tokens from The Pile on 8x A100 GPUs. Data parallelism for Transformers, 8-way expert model parallelism for MoE layers.

capacity_factor={1, 1.5, 2.0} for MoE baselines.

Transformer	hidden_size	num_layers	Weights (M)	GFLOPs
XS	512	6	46	316
Small	768	12	125	879
Medium	1024	24	356	2487
Large	1536	24	760	5122
XL	2048	24	1316	8684

Table 1: Baseline Transformer Models.

MoE	num_experts	top_k	Weights (M)	GFLOPs
XS	64	1	839	316
Small	64	1	3,693	879
Medium	64	1	13,041	2487

Table 2: Transformer-MoE Models.

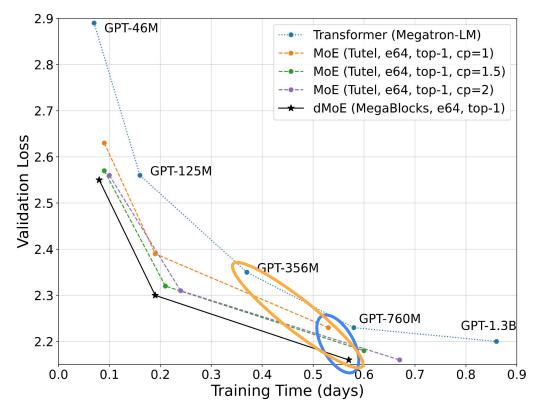
Training Transformer Language Models

Compared to best performing configuration with the same quality:

1.2x - 1.4x faster than Tutel MoEs.
1.8x - 2.4x faster than Megatron-LM Transformers.

MegaBlocks cp=1 speed and cp=inf quality.

- Some slowdown with smaller batch sizes from padding to 128.
- Some slowdown from using smaller batch than dense (memory usage).



MegaBlocks Retrospective