
Efficient Mixture-of-Experts 
Models
Trevor Gale
Google DeepMind
April 3rd, 2025

1



Introduction

2

I’m a staff research scientist at Google DeepMind, 
where I’ve worked for the past 7 years.

My background is in programming and designing 
hardware accelerators. These days, I lead a team 
designing a new hardware accelerator. In the past, 
I’ve worked on Gemini pre-training and AI codesign.

I did my PhD at Stanford, where I worked on sparse 
neural networks (in the same lab at Deepti!).



Today’s Topic: Mixture-of-Experts Layers

3(Shazeer et al., 2017, Lepikhin et al., 2020, Fedus et al., 2021)

https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/2006.16668
https://arxiv.org/abs/2101.03961


Goals for Today

Please ask questions! The value of me being here in person is that we can interact.

4

MoEs.

Things adjacent 
to MoEs.

General AI things.



Background: Deep Neural Networks

Data flows unconditionally through the layers. Layers 
compute some nonlinear transformation of the data.

5



Background: Mixture-of-Experts

Have a bunch of “experts” (models, sub-models). Select 
between or combine their predictions. Related to ensembling.

6(Shazeer et al., 2017)

https://arxiv.org/abs/1701.06538


Background: Sparsely-Gated Mixture-of-Experts

7

A type of layer containing many sub-layers where tokens are 
routed to a subset of these “experts”. What people mean 

when they say MoE today. 

Predates Transformers! First evaluated on RNNs.
(Shazeer et al., 2017)

https://arxiv.org/abs/1701.06538


Background: Transformers

8(Vaswani et al., 2017)

Attention to model sequences, rather than recurrence or 
convolution. Designed to use {GPU, TPU} efficiently!

https://arxiv.org/abs/1706.03762


Background: Transformer MoEs

9(Lepikhin et al., 2020, Fedus et al., 2021)

Make Transformer feed-forward layers SG-MoEs. What we all 
use today.

https://arxiv.org/abs/2006.16668
https://arxiv.org/abs/2101.03961


MoEs Decouple Compute & Parameter Count 

10(Fedus et al., 2021)

In sparse models, we can configure parameter count and compute per token independently. 
This expanded design space yields more efficient models.

https://arxiv.org/abs/2101.03961


Background: Scaling Laws

Scaling laws formalize what we knew empirically: quality increases with {compute, data, 
model} scale. Reflection on the importance of this in AI in “Sutton’s Bitter Lesson”.

11(Kaplan et al., 2020, Sutton, 2019)

http://www.incompleteideas.net/IncIdeas/BitterLesson.html
https://arxiv.org/abs/2001.08361
http://www.incompleteideas.net/IncIdeas/BitterLesson.html


Scaling Laws For Mixture-of-Experts

Formalize the efficiency wins of sparse architectures. Framed in terms of 
“effective parameter count”.

12(Clark et al., 2022)

https://arxiv.org/abs/2202.01169


There Are Many Kinds of Sparsity

13

Weight Sparsity
Sources: Pruning, sparse training

Activation Sparsity
Sources: ReLU, sparse attention, 

mixture-of-experts

All of these forms can be static or dynamic (e.g., changing based on the data)!

Data Sparsity
Sources: Point clouds, graphs, etc.

https://arxiv.org/abs/1710.01878
https://proceedings.mlr.press/v119/evci20a/evci20a.pdf
https://arxiv.org/abs/2210.06313
https://arxiv.org/abs/1904.10509
https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/1908.11069
https://arxiv.org/abs/1609.02907


Other Kinds of Sparsity Show Similar Efficiency

14

For example, unstructured weight sparsity.

(Frantar et al., 2023)

https://arxiv.org/abs/2309.08520


Why Are We Using Mixture-of-Experts Over Them?

15

MoEs are efficient on {GPU, TPU}.

1Startups like MatX are betting on spending even more die area on compute.

Two key facts:
1. Scaling laws show quality scales with compute.
2. {GPU, TPU} maximize compute / watt, compute / 

mm2 with today’s semiconductor fabrication 
technology1.

We want to use sparse methods that use our 
accelerators efficiently. MoEs were designed for this.

sigarch.org/the-future-of-sparsity-in-deep-neural-networks

https://matx.com/
https://www.sigarch.org/the-future-of-sparsity-in-deep-neural-networks/


Efficient Mixture-of-Expert 
Models

16



17

Expert 0

Expert 1

Expert 2

Expert 3

MoE Computation For One Token (1/5)

Router



18

Expert 0

Expert 1

Expert 2

Expert 3

MoE Computation For One Token (2/5)

Token 0

Router



19

Expert 0

Expert 1

Expert 2

Expert 3

MoE Computation For One Token (3/5)

Token 0

Router

2 0.71

expert_id weight



20

Expert 0

Expert 1

Expert 2

Expert 3

MoE Computation For One Token (4/5)

Token 0

Router

2 0.71

expert_id weight



21

Expert 0

Expert 1

Expert 2

Expert 3

MoE Computation For One Token (5/5)

Token 0

Router

2 0.71

expert_id weight

E(Token 0)



MoE Computation For Many Tokens

22

(1) Routing
Assign token feature vectors to 
experts based on probabilities.

(2) Permutation
Group tokens by expert.

(3) Computation
Compute the experts for the set 
of tokens they were assigned.

(4) Un-permutation
Un-permute the results and scale 

each by its expert probability.

Q: What is the value of grouping tokens by expert?



Arithmetic Intensity Analysis (1/3)

23

W1

W2

X

Dense Feed-Forward Network
Matmul with shapes:



Arithmetic Intensity Analysis (2/3)

24

W1

W2

Mixture-of-Experts Feed-Forward Network

…

Expert1

W1

W2

ExpertN

num_experts times more bytes for 
the same op count!



Arithmetic Intensity Analysis (3/3)

25

W1

W2

Mixture-of-Experts Feed-Forward Network

…

Expert1

W1

W2

ExpertN

Each token sees top_k experts!

This is the sparsity of the MoE
(the fraction of the weights that each token will touch)



Point 1: Token Grouping Maximizes Per-Expert Batch

26

W1

W2

Mixture-of-Experts Feed-Forward Network

…

Expert1

W1

W2

ExpertN

Maximizing expert batch size 
maximizes arithmetic intensity.

Maximizing arithmetic intensity 
maximizes throughput.



Point 2: MoEs Have Lower Arithmetic Intensity Than Dense

27

W1

W2

Mixture-of-Experts Feed-Forward Network

…

Expert1

W1

W2

ExpertN

By a factor of the sparsity!

Trivial, but impractical solution: 
Increase batch size 1/sparsity.

(Scaling Book)

https://jax-ml.github.io/scaling-book/


28

~3x Reduction in FLOPs. ~10x More Parameters.

MoEs Trade Compute for Storage



The Tradeoff with MoEs

Compute efficient but parameter inefficient, low arithmetic intensity

29

Expert model parallelism helps address both downsides of MoEs!



The Value of Expert Model Parallelism (1 of 3)

Scenario: data parallel training/serving a dense Transformer

30

Attention

FFN

…
…

Attention

FFN

…
…

Attention

FFN

…
…

Attention

FFN

…
…

● 4-way data parallelism (fwd)

● All parameters replicated



The Value of Expert Model Parallelism (2 of 3)

Scenario: data parallel training/serving a Transformer MoE

31

Attention

MoE

…
…

Attention

MoE

…
…

Attention

MoE

…
…

Attention

MoE

…
…

● 4-way data parallelism (fwd)

● All parameters replicated

● 4-experts / top-1 routing

(not to scale - each is full FFN)

4x FFN weights per device

¼ batch per FFN compute



The Value of Expert Model Parallelism (3 of 3)

Scenario: expert parallel training/serving a Transformer MoE

32

Attention

Expert 0

…
…

Attention

Expert 1

…
…

Attention

Expert 2

…
…

Attention

Expert 3

…
…

● 1 expert per device

● “all to all” communication to 
route tokens to experts (2x)

Same parameter count per device 
as dense scenario

Same arithmetic intensity as 
dense scenario



Expert Parallelism Challenge #1: All-to-All Cost

33

Token routing to remote devices can be (somewhat) expensive.

Recv 
1

Compute 0

Send 
1

Compute 1

Recv 
2

Compute 2

Recv 
3

Send 
2

Compute 2

Send 
3

Pipeline It!
Perform a2a in chunks. Overlap with 

compute on those chunks[1].

[1] Tutel: Adaptive Mixture-of-Experts at Scale, Hwang et al., 2022

Attention MoE

Overlap It!
Parallel Transformer block[2] exposes 
independent operations to hide a2a.

[2] GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model, Wang et al., 2021

https://arxiv.org/abs/2206.03382
https://github.com/kingoflolz/mesh-transformer-jax


Expert Parallelism Challenge #2: Load Imbalance

34

Experts can receive different numbers of tokens!

Load Balancing Loss / Jitter
Levers for controlling imbalance at train time. 
Balance between model quality and step time. 

Or, newer aux-loss-free load balancing[1]!

[1] Auxiliary-Loss-Free Load Balancing Strategy for Mixture-of-Experts, Wang et al., 2024
[2] Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism, Shoeybi et al, 2020

Alternative Sharding
Mixing expert sharding with tensor parallelism[2] 
can help reduce load imbalance across devices.

https://arxiv.org/html/2408.15664v1
https://arxiv.org/html/2408.15664v1
https://arxiv.org/pdf/1909.08053


Aside: Model Design Matters a Lot!

35

Architectural parameters like d_ff, num_experts, 
and top_k affect parameter efficiency and 
arithmetic intensity!

Constant FLOPs!

[1] Unified Scaling Laws for Routed Language Models, Clark et al., 2022
[2] Scaling Laws for Fine-Grained Mixture of Experts, Krajewski et al., 2024

Scaling laws work for MoEs:

https://arxiv.org/abs/2202.01169
https://arxiv.org/abs/2402.07871


Not all FLOPs are Created Equal

36

MoEs are compute efficient!

At training time we realize high % of this 
theoretical win.

Batch size limitations for serving can 
change this calculus dramatically.



The “U” of MoE Serving Efficiency (1 of 4)

Three Regions of Efficiency.

37
TMBS = “Throughput Maximizing Batch Size”, i.e., batch size where dense ~saturates math units.

Region #1: Low Batch Serving
Perf limiter: memory bw loading weights.

Batch=1: MoE/dense touch the same 
number of weights!

Batch=num_experts: MoE touches 
num_experts times as many weights1.

1 Assuming uniform distribution of tokens to experts.



The “U” of MoE Serving Efficiency (2 of 4)

38
TMBS = “Throughput Maximizing Batch Size”, i.e., batch size where dense ~saturates compute.

Region #2: Medium Batch Serving
Dense/MoE runtime ~constant as compute 
utilization ramps up.

Batch=TMBS: Dense FFN ~saturates 
compute.

Further increases in batch incur 
proportionate runtime increase for dense.

MoE is not yet saturating compute due to 
lower arithmetic intensity (1/num_experts)



The “U” of MoE Serving Efficiency (3 of 4)

39
TMBS = “Throughput Maximizing Batch Size”, i.e., batch size where dense ~saturates compute.

Region #3: High Batch Serving
Dense/MoE runtime ramps up as MoE 
approaches compute saturation.

Batch=TMBS*num_experts: MoE 
~saturates compute.

Once batch is sufficient, both dense/MoE 
saturate compute and have ~equal runtime.



The “U” of MoE Serving Efficiency (4 of 4)

40
TMBS = “Throughput Maximizing Batch Size”, i.e., batch size where dense ~saturates compute.

Commentary:
This is ~a roofline model for dense/MoE 
perf. There are factors not modeled.

num_experts, top_k, d_ff, sharding affect the 
depth/width of this “U”.

Latency constraints limit num_experts.

MoE is higher quality - you might be happy 
in the medium batch regime.

The “U” is shallower if you compare e2e 
runtime.



Broader Topics in AI

41



42

Commoditization of Frontier Models



43

Unique Model Capabilities

“Please put a photorealistic dragon flying in the top left corner of the image.”



Commoditized Intelligence?
For some applications, I expect the quality we have today is good enough.

44

(1) We will probably push the cost of 
these to 0 in the next couple years

(2) CPUs could become relevant for 
these applications!

https://github.com/google/gemma.cpp

https://github.com/google/gemma.cpp


The End

MoEs are just the beginning for sparsity, adaptivity and dynamic computation!

45

FFN

Attention

FFN

…

FFN FFN

…



MegaBlocks: Efficient Sparse 
Training with Mixture-of-Experts

46



Mixture-of-Experts Layers

47

(1) Routing
Assign token feature vectors to 
experts based on probabilities.

(2) Permutation
Group tokens by expert.

(3) Computation
Compute the experts for the set 
of tokens they were assigned.

(4) Un-permutation
Un-permute the results and scale 

each by its expert probability.

As expert count increases, individual expert computation gets smaller. Computing the experts in 
parallel is key to good performance!

(Shazeer et al., 2017, Lepikhin et al., 2020)

https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/2006.16668


expert_capacity = capacity_factor * num_tokens / num_experts

Batched Expert Computation

48

Batched Matrix Multiplication Token Dropping
Tokens will be skipped if too many are 

assigned to an expert. 

Bad: Introduces 
quality-speed tradeoff.

-0.15
-0.26

>2x FLOPs

Experts must have same number of tokens! Set 
via capacity_factor hyperparameter.



MegaBlocks: Mixture-of-Experts with Structured Sparsity

49

(Current) Batched Matmul
Parallel, but constrained expert computation.

(Reformulation) Block Diagonal Matmul
Expert computation with block diagonal matrices.

(Generalization) Load Imbalanced Routing
Use variable block sizes to enable load imbalanced routing.



MegaBlocks: Mixture-of-Experts as Structured Sparsity

50

(This Paper) Load Imbalanced Routing
Realized via block-sparsity.

(Future) Adaptive Computation
With variable sized experts.

(Future) Dynamic Activation Sparsity
Maximum flexibility with block-sparsity.

This is the first step towards our goal to improve quality / flop by generalizing MoEs.

1.2x - 1.4x faster than state-of-the-art MoEs.



MegaBlocks: Efficient Sparse Training with Mixture-of-Experts

1.2x - 1.4x faster than Tutel MoEs. 1.8x - 2.4x 
faster than Megatron-LM Transformers.

51

MegaBlocks: Efficient Sparse Training with Mixture-of-Experts, MLSys’23
Trevor Gale, Deepak Narayanan, Cliff Young, Matei Zaharia

Enabled by efficient sparse implementation!

More in our paper:

https://people.eecs.berkeley.edu/~matei/papers/2023/mlsys_megablocks.pdf


Impact & Adoption

Collaborated with Databricks to 
train DBRX with MegaBlocks.

Mixtral 8x7B released with MegaBlocks 
reference implementation.

Models Using MegaBlocks

JetMoE trained with MegaBlocks.

March 2024: MegaBlocks becomes an official Databricks 
project => github.com/databricks/megablocks.
 

Libraries Using MegaBlocks

github.com/microsoft/tutel

github.com/huggingface/nanotron

github.com/EleutherAI/gpt-neox

github.com/google/jax => ops, written in Pallas
github.com/google/maxtext => dMoE in JAX on TPU
github.com/pytorch/xla => dMoE in PyTorch on TPU

MegaBlocks on TPU (!)

https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://mistral.ai/news/mixtral-of-experts/
http://research.myshell.ai/jetmoe
http://github.com/databricks/megablocks
http://github.com/microsoft/tutel
http://github.com/huggingface/nanotron
http://github.com/EleutherAI/gpt-neox
https://github.com/google/jax/tree/main/jax/experimental/pallas/ops/tpu/megablox
https://github.com/google/maxtext/tree/ranran_moe_debug
https://github.com/pytorch/xla/pull/6940


MegaBlocks Was Built to Enable New Forms of Sparsity 

53

(This Paper) Load Imbalanced Routing
Realized via block-sparsity.

(Future) Adaptive Computation
With variable sized experts.

(Future) Dynamic Activation Sparsity
Maximum flexibility with block-sparsity.

Long term goal was to get here!Lots of demand for this!



MegaBlocks Is More Than Just Sparse Compute

Dropless Expert Model Parallelism
Also other sharding, like FSDP.

Grouped/Ragged Matmul
Block-sparse, but specific to dropless MoE 

computation. Easier to maintain and port to 
new architectures (H100, TPU)

Memory Optimizations
Manual buffer reuse in backward pass, 
activation function rematerialization.

Middle Diagram Source: “Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer”

https://arxiv.org/abs/1701.06538


Backup

55



Roadmap

0. Introduction
1. MoEs with Block Sparsity
2. Block-Sparse Kernels for MoEs
3. End-to-End Results with dMoEs

56



MoEs With Block Sparsity

57



Dropless-MoEs With Block-Sparsity

58

11:Assign tokens to experts.

2

4:Use block-sparse products to compute 
expert layers.

Pseudocode for dMoEDropless-MoE (dMoE) Computation:

4

3

5

(Changes for dMoE highlighted in blue)

2:Construct the sparse matrix from router 
outputs.

3:Group the tokens by expert assignment.

5:Un-permute and scale by router weights.



Multi-Layer Expert Computation

59

Expert Layers 0 Expert Layers 1

The sparse matrix topology is determined by the router and re-used 
across the layers of the experts.

W0 W1



Block-Sparse Kernels for MoEs

60



Block-Sparse Kernels for MoEs

61

Library Large Blocks Transposition Load Imbalance Fast Construction

cuSPARSE

Triton Blocksparse

cuSPARSE not an option: no transposes + ELLPACK format. 

For high throughput. Fwd + bwd passes. Changes every use.No token dropping.

Blocksparse does expensive preprocessing: 5-10x slower than dense if not amortized.



Our Solution: Hybrid Block-Sparse Format

Many “views” of the sparse matrix:

62

Metadata is cheap to compute and store: 
<0.1% storage overhead for 128x128 blocks

Blocked-CSR: sparse inputs

Blocked-COO: sparse outputs

Transpose Index: transposed sparse inputs



MegaBlocks Block-Sparse Kernels

63

98.6% of cuBLAS performance.

A100-SXM4-80GB, CUDA 11.5, block_size=128x128



End-to-End Results

64



Evaluation Details

MegaBlocks is built on Megatron-LM + PyTorch.

Models:
Transformers-MoEs with 64-experts and top-1 routing. 

Baselines:
MoE: Tutel (+ Megatron-LM)
Dense: Megatron-LM

Training:
10B tokens from The Pile on 8x A100 GPUs. Data 
parallelism for Transformers, 8-way expert model 
parallelism for MoE layers. 

capacity_factor={1, 1.5, 2.0} for MoE baselines.

65

Table 1: Baseline Transformer Models.

Table 2: Transformer-MoE Models.



Training Transformer Language Models

Compared to best performing configuration 
with the same quality:

1.2x - 1.4x faster than Tutel MoEs.
1.8x - 2.4x faster than Megatron-LM 
Transformers.

66

● Some slowdown with smaller batch 
sizes from padding to 128.

● Some slowdown from using smaller 
batch than dense (memory usage).

MegaBlocks cp=1 speed and cp=inf quality.



MegaBlocks Retrospective

67


