
CS1380 Distributed System Theophilus Benson

Debugging and Profiling
Spring 2022

Contents

1 Introduction 2

2 Debugging 2
2.1 Installation . 2
2.2 Getting Started . 2

2.2.1 Types of Debugging Sessions . 2
2.3 Navigating a Debugging Session . 3

2.3.1 Viewing Source Code . 3
2.3.2 Adding Breakpoints . 3
2.3.3 Running the Program . 3
2.3.4 Viewing Variables . 4

2.4 IDE Debugging . 4
2.5 Exercise . 4

2.5.1 UMessage . 4
2.5.2 Protocol . 4
2.5.3 Message Semantics . 4
2.5.4 Client . 5
2.5.5 Client . 5
2.5.6 Getting Started . 5

2.6 Checkoff Questions . 6

3 Profiling 7
3.1 Installation . 7
3.2 Creating profiles . 7
3.3 Viewing the profiles . 7
3.4 Exercise . 8
3.5 Checkoff Questions . 8

CS1380 Distributed System Theophilus Benson

1 Introduction

This lab is intended to get you more familiar with debugging and profiling in Go, which you may
find helpful for the rest of the assignments this year. We will be using delve to debug in Go.

To get started, please use this github classroom link to generate stencil. You can complete this
lab either individually or in pair with your Tapestry project partner. Since there are two parts to
this lab, there are two directories debugging and profiling in the stencil. For each section, use
that folder as your Go module root directory .

We are doing things differently in this lab; there is no Gradescope assignment to submit your lab
report. Instead, you have to come to the TA hours to check off. We will grade the lab based on
completion; you will get full credit if you have done the check off!

2 Debugging

Use the debugging folder as your Go module root directory for this part of the lab.

2.1 Installation

To install delve run the following command:

go install github.com/go-delve/delve/cmd/dlv@latest

To check that delve installed successfully, check its version with dlv version.

dlv version

Delve Debugger

Version: 1.8.0

Build: Id: SOME_HASH

2.2 Getting Started

From the projects root directory, you can invoke delve on a Go file with

dlv debug <RELATIVE_PATH_TO_GO_FILE>

i.e. dlv debug client/client.go.

This will start a new debugging session inside client.go. We can then type help to see all
available commands. This README also provides a comprehensive list of all available commands.

2.2.1 Types of Debugging Sessions

There are three ways we can invoke delve on Go programs.

• dlv debug <PATH>

This first compiles the source into a binary then starts a debugging session (similar to ‘go
run‘)

• dlv exec <PATH>

This expects a pre-compiled binary before starting the debugging session

• dlv test <PATH>

This is used to start a debugging session on a Go test

TIP: If the Go program requires command line arguments, you can pass them into the debugging
session as follows:

dlv debug <PATH> -- <ARGS>

https://github.com/go-delve/delve
https://classroom.github.com/a/WH9RlhaC
https://github.com/go-delve/delve/blob/master/Documentation/usage/dlv.md

CS1380 Distributed System Theophilus Benson

i.e. dlv debug chat.go -- -server. Note that in our exercise, we will be using dlv test.

2.3 Navigating a Debugging Session

Once you’re within a debugging session, here are some ways to navigate your Go program.

2.3.1 Viewing Source Code

• list <PACKAGE> <FUNCTION>

Prints the source code of the given function in the given package

i.e. list client.UserReader

• list <FILE PATH> <LINE NUMBER>

Similar to the above command, but we can specify instead a filepath to a Go file and a line
number we want to examine

i.e. list client/client.go:10

• funcs <PATTERN>

Finds all functions in the source containing the given pattern

i.e. funcs handle

• exit Quits the debugging session

2.3.2 Adding Breakpoints

After examining the program, we can make use of breakpoints to mark locations in the code we
want to pause execution to investigate.

• break <PATH>:<LINE NUMBER>

Adds a breakpoint in the given location (determined by filepath and line number). A
breakpoint is a location in the code where you want the program to stop to inspect some
state (such as the value a variable takes on).

i.e. break client/client.go:22

• breakpoints

Lists all currently active breakpoints in the debugging session

• clear <NUMBER>

Removes the breakpoint with the given number from the debugging session

• clearall

Removes all breakpoints from the debugging session

2.3.3 Running the Program

Once the breakpoints are set, we can now start execution of the program and wait until we hit
certain breakpoints to view the state of different variables.

• continue

Runs until a breakpoint is hit or the program terminates.

• next

Moves to the next line of the source code

• step

Steps inside to go to the next line of execution (i.e. within a function call)

CS1380 Distributed System Theophilus Benson

• stepout

Steps outside to go back to the location where a function may have been called

• restart

Restarts the program execution from the start (allows you to debug a program multiple
times without losing your breakpoints)

2.3.4 Viewing Variables

When execution is paused (i.e. a breakpoint is hit or next / step / stepout is used), we can
examine the values of different variables.

• print <VARIABLE> Displays the value of a variable

i.e. print users

• locals Displays all local variables

2.4 IDE Debugging

Some IDEs (VSCode, Golang) will have built-in debugging interfaces. Feel free to use these
features as well instead of delve if you prefer. These debugging options may have graphical
interfaces that provide the same functionality as delve (setting breakpoints, stepping through
code, viewing variable values).

2.5 Exercise

Now that you learned how to use delve, you can use it for debugging the debugging directory
which contains broken code for a chat application called UMessage. HINT: There are a total of
3 bugs between the client and server code.

2.5.1 UMessage

UMessage supports sending and receiving messages in a user-to-user manner (like Google Hang-
outs) instead of broadcast (like IRC or group chats). This means that if three users (Tom, Rodrigo,
and Ugur) are connected to the same server, Tom can send a message to Rodrigo that will not be
delivered to Ugur. The server is centralized (for simplicity) and has the responsibility of routing
messages to and from the connected users of the system.

The directory contains a broken solution for UMessage. Your task is to find three bugs in parts
containing client and server logic, client/client.go and server/server.go respectively, using
delve. You can assume that other files, including umessage/proto.go, umessage/util.go and
umessage/listener.go are correctly implemented as intended.

The following parts describe how UMessage is supposed to be implemented.

2.5.2 Protocol

The UMessageMsg struct along with the Purpose enum contained in umessage/proto.go define
the messages that are exchanged between clients and a server. All messages between a client and
server use gob encoding as implemented in umessage/util.go.

2.5.3 Message Semantics

The type of message and the meaning of the fields is defined by its Purpose, which can be any of
the following: CONNECT, MSG, LIST, ERROR, DISCONNECT.

• CONNECT

https://pkg.go.dev/encoding/gob

CS1380 Distributed System Theophilus Benson

– Description: upon starting a client it sends a message of this type to initiate a connection
to the server for future message transport.

– UMessageMsg.Username contains the username of the client attempting to connect with
the server.

– UMessageMsg.Body is not defined for this type of message.

• MSG

– Description: a chat msg sent from one a client to another user (may be itself).

– UMessageMsg.Username is the username that the msg is destined for (e.g. Tom).

– UMessageMsg.Body contains the actual msg (e.g. “hello world”).

• LIST

– Description: a client can ask the server what users are currently connected.

– UMessageMsg.Username is not defined for this type of message.

– UMessageMsg.Body is empty if this is a request and contains a list of connected users
if it is a response.

• ERROR

– Description: if the server cannot satisfy a request for whatever reason it should send
an error message back to the client saying why it cannot.

– UMessageMsg.Username is not defined for this type of message.

– UMessageMsg.Body contains the error string

• DISCONNECT

– Description: a client can ask to be disconnected gracefully from the server

– UMessageMsg.Username is not defined for this type of message.

– UMessageMsg.Body is not defined for this type of message.

2.5.4 Client

The server is responsible for conforming to the protocol detailed in the previous section. It’s
primary responsibility is to route messages between client users.

In order for the server to start it needs to listen for incoming connections on a defined port. This
part is done in umessage/listener.go and you can assume that it is correctly implemented.

2.5.5 Client

Upon starting up, the UMessage client should connect to a user defined UMessage server. From
there it should take user input (e.g. via a command prompt) to send and receive messages between
it and the server. Likewise, you can assume that client side correctly behaves to connect to the
server.

2.5.6 Getting Started

You may find it helpful to run the client and server in separate terminal windows to observer the
behavior of the system. Instructions for how to run this can be found in the README in the
repository. We have provided the tests client test.go and server test.go that are currently
failing. When you have fixed the bugs in UMessage, these tests should pass. You can run go test

./... in the root directory of this module to run both tests.

CS1380 Distributed System Theophilus Benson

Note that your IDE (VSCode, Goland, etc.) may have built in debugging features. Feel free to
use these instead of delve if you prefer.

If using delve, we recommend debugging on the provided test files rather than chat.go. To run
delve on the tests, you can run the following commands on terminal:

1. dlv test ./client

Debugs tests in the client package

2. dlv test ./server

Debugs tests in the client package

When you have a debugger running on the tests, here are some delve commands that might be
helpful:

1. break client.Test SendList

Sets a breakpoint at the start of the Test SendList test

2. locals

Prints all local variables

3. continue

Starts / resumes execution

4. step

Steps into the function on a given line

5. next

Moves to the next line of code in the given file

2.6 Checkoff Questions

After fixing the broken implementation, please come to lab hours with responses to the following
questions:

1. What are the 3 bugs you found in UMessage and how did you discover them?

2. Assume we have a network of a single UMessage server and n UMessage clients. If one client
node goes down, how can we identify this outage on the server side? On the client-side?

3. In the same network as above, what if the server went down?

CS1380 Distributed System Theophilus Benson

3 Profiling

In this section, you will learn how to profile your program with pprof of a benchmark in Go.
pprof will be used to analyze and visualize the profiling data created by benchmarks.

Use the profiling folder as your Go module root directory for this part of the lab.

3.1 Installation

To install pprof, run the following command:

go install github.com/google/pprof@latest

You also need to install Graphviz to visualize profiled data. It can be installed here.

3.2 Creating profiles

In the previous lab, you learned how to do simple benchmarking of a Go program using the
following command on the test directory:

go test -bench=.

Alternatively, you can run the following command if you are not on the test directory:

go test <PATH_TO_THE_TEST_DIRECTORY> -bench=.

You can also replace -bench=. with -bench=<NAME> to benchmark using the following benchmark
function:

func Benchmark<NAME>(b *testing.B) {

...

}

To create a memory and CPU profile, you just need to add additional flags. For instance, you can
run the following command in the test directory:

go test -bench=. -memprofile <MEMPROFILE.out> -cpuprofile <CPUPROFILE.out>

It is also possible to profile mutexes and goroutines using the mutexprofile and blockprofile

flags respectively:

1. -mutexprofile <MUTEX.out>: Write a mutex contention profile to the specified file when
all tests are complete.

2. -blockprofile <BLOCK.out>: Write a goroutine blocking profile to the specified file when
all tests are complete.

3.3 Viewing the profiles

To investigate profiling results, you can run the following command (again in the Go module root
directory):

go tool pprof <PATH_TO_PROFILE_OUTFILE>

For instance, to view CPU profile information, run go tool pprof profile.out.

This will enter pprof’s interactive mode. When in interactive mode, you have many commands
available to investigate profile data. Here are some that may be useful:

1. help: Prints all available commands

2. top: Displays top entries in text form

3. png: Saves a graph image in PNG format to your disk

https://github.com/google/pprof
http://www.graphviz.org/
http://www.graphviz.org/download/

CS1380 Distributed System Theophilus Benson

3.4 Exercise

Using the above commands, generate the following:

1. CPU profile for (list of top functions + graph) BenchmarkCalculate

2. Comparison profile between BenchmarkPrepend and BenchmarkAppend

To compare two profiles you will need to:

(a) Generate separate profile files for both benchmarks (Hint: use different names when
running the go test command

(b) Use the --diff base flag when invoking go tool to specify a profile to be subtracted
from the base profile.

Ex: go tool pprof --diff base=memprofileAppend.out memprofilePrepend.out

Note: Some percentages may have negative values in your profile output when compar-
ing. This is expected (you can use absolute value when comparing the functions).

Note that you should have separate graphs and separate lists of functions for both benchmarks
(be careful when running the go test command, the subsequent run will overwrite the original
profile files!)

3.5 Checkoff Questions

After generating the profiles, be prepared to answer these questions to the TA during checkoff:

1. What function in BenchmarkCalculate takes up the most CPU usage?

2. What function takes up the most memory when comparing BenchmarkAppend and BenchmarkPrepend?

3. What do the lines between nodes in the graphs represent?

4. (Optional) Comparing the Append and Prepend function source code, why does the perfor-
mance of one differ from the other?

Feedback

Please let us know if you find any mistakes, inconsistencies, or confusing language in this or any
other CS138 document by filling out the anonymous feedback form.

http://cs.brown.edu/courses/cs138/s22/feedback.html

