
CS1380 Distributed Computer Systems Benson

Project 0: Golang Intro & WhatsUp
Due: 10:29 AM, Jan 25, 2018

Contents

1 Introduction 1

2 The Go Programming Language 1

2.1 Installing Go . 2

2.2 A Tour of Go . 2

2.3 Writing Go Code . 2

3 WhatsUp 2

3.1 Getting Started . 3

3.2 Protocol . 3

3.3 WhatsUpMsg Struct . 3

3.4 Message Semantics . 3

3.5 Server . 5

3.6 Client . 5

3.7 Testing . 5

4 Handing In 5

5 Grading 6

1 Introduction

Welcome to CS 1380! This project is a self-contained introduction to the course and should help
you familiarize yourself with the Go programming language. You’ll be implementing a small chat
application (including two components: client & server).

We don’t assume that you have experience with Go, therefore most of this assignment is targeted at
getting you comfortable with using Go, which will be used in all of the projects in this course.

2 The Go Programming Language

CS1380 Project 0: Golang Intro & WhatsUp 10:29 AM, Jan 25, 2018

Go is an open-source programming language created by a team at Google (and
other outside contributors). Go was initially started in 2007 by Robert Griesemer,
Rob Pike, and Ken Thompson. Go is a systems language with roots in C, C++,
and other languages. Version 1 of Go was released in 2012 and is under active
development (v1.7 was released 8/2016). If you have more questions about Go’s
history there’s a wonderful FAQ1 on their website which we urge you to checkout.

2.1 Installing Go

The department machines have Go available as a contrib project (v1.7) at /contrib/bin/go, but
in case you want to use your own machine we urge you to follow the official installation directions2

for more details. If you are on a Mac and use Homebrew3, brew install go will install the latest
version of Go (v1.7).

2.2 A Tour of Go

“A Tour of Go”4 is an interactive tutorial that helps teach many of the interesting bits about Go.
Before we start our chat application (WhatsUp) we highly recommend you that you go through this
tour (even if you have previous Go experience you may learn something new).

There are 12 exercises spread throughout the tour. We recommend you do most of them since they
are useful in making sure you understand how things are done in Go. We are not requiring you to
turn in anything from this part of the assignment.

2.3 Writing Go Code

Once you finish the tour, read “How to Write Go Code”5 to understand how to organize code, write
a package or library, test your code, and work with the command line tools. Make sure to setup
your $GOPATH appropriately and become familiar with the Go command-line tool. The article is
also available as a screencast6.

In addition, skim through Effective Go7, and the Go FAQ8. Both are great reference documents
that you should come back to from time to time.

3 WhatsUp

WhatsUp is a small chat application that somewhat resembles an application with a similarly
sounding name. WhatsUp supports sending and receiving messages in a user-to-user manner (like
Google Hangouts) instead of broadcast (like IRC or group chats). This means that if three users

1https://golang/doc/faq
2https://golang.org/doc/install
3http://brew.sh/
4https://tour.golang.org/
5http://golang.org/doc/code.html
6https://www.youtube.com/watch?v=XCsL89YtqCs
7https://golang.org/doc/effective_go.html
8https://golang.org/doc/faq

2

https://golang/doc/faq
https://golang.org/doc/install
http://brew.sh/
https://tour.golang.org/
http://golang.org/doc/code.html
https://www.youtube.com/watch?v=XCsL89YtqCs
https://golang.org/doc/effective_go.html
https://golang.org/doc/faq
https://golang/doc/faq
https://golang.org/doc/install
http://brew.sh/
https://tour.golang.org/
http://golang.org/doc/code.html
https://www.youtube.com/watch?v=XCsL89YtqCs
https://golang.org/doc/effective_go.html
https://golang.org/doc/faq

CS1380 Project 0: Golang Intro & WhatsUp 10:29 AM, Jan 25, 2018

(Tom, Rodrigo, and Ugur) are connected to the same server, Tom can send a message to Rodrigo
that will not be delivered to Ugur. The server is centralized (for simplicity) and has the responsibility
of routing messages to and from the connected users of the system.

3.1 Getting Started

You can get the stencil code by running go get github.com/brown-csci1380/whatsup. This
should clone the repo into $GOPATH/src/github.com/brown-csci1380/whatsup. You can edit
your code, and run go build to compile in-place, or go install to compile and install the whatsup
binary into $GOPATH/bin, allowing you to run it directly.

This step is new this year, so if it is holding you back, feel free to also download a copy of the stencil
code from the website and work within that directory.

Within the stencil, we provide a small amount of library code to help standardize the communi-
cation between a client and server. You are provided a protocol library (whatsup/proto.go) so
that everyone uses the same format for sending/receiving messages and a TCP listener library
(whatsup/listener.go) so that everyone uses unique random listening ports. Since everyone will
be using the same protocol you can use it to chat with your friends.

3.2 Protocol

The ChatMsg struct along with the Purpose enum contained in whatsup/proto.go define the
messages that are exchanged between clients and a server. All messages between a client and server
should use gob encoding9 to send WhatsUpMsg structs. The support code makes use of these
packages to serialize and deserialize messages for you.

3.3 WhatsUpMsg Struct

• A message contains three data parts: Username string, Body string, Action Purpose.

• The type of message and the meaning of the fields is defined by its Purpose, which can be
any of the following: CONNECT, MSG, LIST, ERROR, DISCONNECT.

3.4 Message Semantics

• CONNECT:

– Description: upon starting a client it sends a message of this type to initiate a connection
to the server for future message transport.

– WhatsUpMsg.Username contains the username of the client attempting to connect with
the server.

– WhatsUpMsg.Body is not defined for this type of message.
9http://golang.org/pkg/encoding/gob/

3

http://golang.org/pkg/encoding/gob/
http://golang.org/pkg/encoding/gob/

CS1380 Project 0: Golang Intro & WhatsUp 10:29 AM, Jan 25, 2018

// Enum
type Purpose int

const (
CONNECT Purpose = 1 + iota
MSG
LIST
ERROR
DISCONNECT

)

type WhatsUpMsg struct {
Username string
Body string
Action Purpose

}

Figure 1: structs from whatsup/protocol.go

• MSG:

– Description: a chat msg sent from one a client to another user (may be itself).
– WhatsUpMsg.Username is the username that the msg is destined for (e.g. Tom).
– WhatsUpMsg.Body contains the actual msg (e.g. hello world).

• LIST:

– Description: a client can ask the server what users are currently connected
– WhatsUpMsg.Username is not defined for this type of message.
– WhatsUpMsg.Body is empty if this is a request and contains a list of connected users if it

is a response.

• ERROR:

– Description: if the server cannot satisfy a request for whatever reason it should send an
error message back to the client saying why it cannot.

– WhatsUpMsg.Username is not defined for this type of message.
– WhatsUpMsg.Body contains the error string

• DISCONNECT:

– Description: a client can ask to be disconnected gracefully from the server
– WhatsUpMsg.Username is not defined for this type of message.
– WhatsUpMsg.Body is not defined for this type of message.

4

CS1380 Project 0: Golang Intro & WhatsUp 10:29 AM, Jan 25, 2018

3.5 Server

The server is responsible for conforming to the protocol detailed in the previous section. It’s primary
responsibility is to route messages between client users. You must use Go routines and may use Go
channels to deal with concurrency. Remember that in concurrent programming you must find a way
for data to be accessed safely with no race conditions. When programming with Go routines and
channels you may find places where mutexes will come in handy.

In order for the server to start it needs to listen for incoming connections on a defined port. We’ve
taken care of this part for you in the listener library (whatsup/listener.go), use the function
OpenListener() (net.Listener, int, error) to do this. It returns a Go net.Listener object,
an integer that is the port it successfully listened on and an error (this is nil if there were no errors).
The remainder of the server design and structure is left up to you.

3.6 Client

Upon starting up, the WhatsUp client should connect to a user defined WhatsUp server. From
there it should take user input (e.g. via a command prompt) to send and receive messages between
it and the server. We leave the overall design of this portion to your best judgment.

3.7 Testing

We will not be fully testing your code (unlike future projects!), but we do expect you to have at
least a few tests (i.e., > 1) so that you have a chance to get familiar with how testing in Go works.
Please refer to the testing documentation10 for examples on how to setup Go tests for your project.

4 Handing In

We will not be grading this assignment in detail (unlike future projects!). This project is more
geared towards helping you get a head start on Go so that future projects will be a bit easier. The
directory structure of your assignment should include the following:

• README

– Please write up a simple README documenting any bugs you know of in your code,
any extra features you added, and anything else you think the TAs should know about
your project.

• Chat

– The contents of your project and all required source code to build and run it.

If you have pre-registered for the course, you should run the electronic handin script

/course/cs138/bin/cs138_handin whatsup
10http://golang.org/pkg/testing/

5

http://golang.org/pkg/testing/
http://golang.org/pkg/testing/

CS1380 Project 0: Golang Intro & WhatsUp 10:29 AM, Jan 25, 2018

to deliver us a copy of your code.

If you are not pre-registered for the course, you should email the TA staff your handin by the
deadline.

5 Grading

Unlike future projects this project will not count towards your final grade. However, we will evaluate
your submission and provide feedback. The main goal of this project is for you to get familiar with
Go! Your program should successfully compile and pass all the tests you provide. Your code should
also be able to interoperate with our implementation and with other students’ implementations, as
they will all use the same message formats and semantics.

Please let us know if you find any mistakes, inconsistencies, or confusing language in this or any
other CS1380 document by filling out the anonymous feedback form:

http://cs.brown.edu/courses/cs138/s18/feedback.html.

6

http://cs.brown.edu/courses/cs138/s18/feedback.html

	Introduction
	The Go Programming Language
	Installing Go
	A Tour of Go
	Writing Go Code

	WhatsUp
	Getting Started
	Protocol
	WhatsUpMsg Struct
	Message Semantics
	Server
	Client
	Testing

	Handing In
	Grading

