
gRPC

Lab posted online

http://cs.brown.edu/courses/cs138/s18/content/labs/grpc.pdf

Motivation: PuddleStore!

● Every project progressively contained less and less
RPC support code

● In Puddlestore you will be creating your own RPC
methods and data from scratch

Remote Procedure Call

Protocol Buffers

● “Google's language-neutral, platform-neutral, extensible
mechanism for serializing structured data”

● Similar to XML but more efficient
● Starting point for RPC implemenation

Definitions

When to use RPC calls?

● Need to change the state of a remote node
● Need to retrieve information from the remote node

Protobuf file

● Filename ends with “.proto”
● Includes syntax and package
● Contains messages and service

File:

1 syntax = “proto3”;
2
3 package myPackage;
4
5 // define service
6
7 // define messages
...

Protobuf messages

● Protobuf’s version of “struct”
● Types include: bool, int32, float, double, and string
● Nested object definitions
● Enum values
● Repeated fields
● Numbers represent unique tags for each field

○ = 1; = 2; … etc

message Person {
 string name = 1;
 int32 id = 2;
 string email = 3;

 enum PhoneType {
 MOBILE = 0;
 HOME = 1;
 WORK = 2;
 }

 message PhoneNumber {
 string number = 1;
 PhoneType type = 2;
 }

 repeated PhoneNumber number = 4;
}

Protobuf services

● Protobuf’s version of “methods”
● Must contain one input and one output

○ can use “empty” data types if field is not needed
● Inputs and outputs are predefined messages
● Requires the “rpc” keyword

service RaftRPC {
 rpc JoinCaller(RemoteNode) returns (Ok) {}
 rpc GetIdCaller(Empty) returns (IdReply) {}
 }

Compiling protobuf

● Compile

$ protoc -I=$SRC_DIR $SRC_DIR/example_rpc.proto --go_out=$DST_DIR

$ /course/cs1380/bin/cs138_protoc -I . ./example_rpc.proto --go_out=plugins=grpc:.

● Creates example_rpc.pb.go with Go implementation of defined
objects and interface

● Messages -> structs
● Service -> interface

Implementing gRPC methods

● Implement the service interface (e.g. RaftNode implementing Caller functions)
● Service RPC methods will compile to the form

JoinCaller(context.Context, *RemoteNode) returns (*Ok, error)

● Note:
○ Contains context object as an argument
○ RPC object arguments are pointers
○ Additional error return value

● (Recommended) RPC methods that implements client side of call… Calls Caller
methods.

Communication

Client vs Server

Client:

● Connects to server through
address (includes port)

● Converts local data to RPC
messages and receives RPC
messages back

● (optional) methods end in “RPC”

Server:

● listens for clients on port
● Implements methods in service interface
● (optional) methods end in “Caller”
● Converts RPC messages to local data

and replies with RPC messages

Server/Client communication

● Without gRPC:
○ Server listens on port, Client connects to server’s address and port

● With gRPC:
○ Similar but wrapped with grpc objects and functions

Receiving RPCs (Server)

● Requires:
○ An object that implements the services interface

in *.pb.go
○ A listening connection object (using port)
○ A grpc Server object

● Steps:
○ Register object as grpc server
○ Listen for RPCs

// Create conn
conn := Listen(...)
// Create grpc server
s := grpc.NewServer()
// Create receiving object
myNode := Node {
 // data fields
}
// register and serve
RegisterMyServiceServer(s,
&myNode)
go s.Serve(conn)

// implement Caller methods

Sending RPCs (Client)

● Requires:
○ A grpc Client object (using address +

port)
● Steps:

○ Use client object to call methods on
server

● DialOptions examples:
○ grpc.WithInsecure()
○ grpc.FailOnNonTempDialError(true)

// Create grpc client
conn, err := grpc.Dial(addr,...
dialOptions)
// Register client
cc = NewMyServiceClient(conn)

// user “Caller” methods on client
obj
cc.JoinCaller(...)

Raft

● RaftNodes is both a client and a server:
○ Each RaftNode object contains *grpc.Server to receive RPC

calls
○ Calls RPC on other nodes by using RPC methods with extesnsive

ConnClient Managment

Additional resources

● Protobuf:
○ https://developers.google.com/protocol-buffers/

● gRPC:
○ https://grpc.io/

● Lab exercise:
○ http://cs.brown.edu/courses/cs138/s18/content/labs/grpc.pdf

https://developers.google.com/protocol-buffers/
https://grpc.io/
http://cs.brown.edu/courses/cs138/s18/content/labs/grpc.pdf

Questions?

Goodluck

