
CS138 Distributed Computer Systems Doeppner, Fonseca

Project 3: Raft
Due: 11:59 PM, Apr 11, 2017

Contents

1 Introduction 1

2 Raft Overview 2

2.1 Leader Election . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Log Replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3 Client Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.4 Other Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Implementation 4

3.1 Raft protocol implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.2 gRPC implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2.1 Protobuf file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2.2 gRPC Client and Server functions . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Testing 8

4.1 Building and Running . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5 Style 10

6 Getting Started 10

7 Extra Credit 10

8 Handing in 11

1 Introduction

An important part of creating fault-tolerant distributed systems is providing the ability for multiple
nodes to come to a consensus about state in the system. The problem of distributed consensus has
been around for a long time and has typically been solved using implementations of the popular
Paxos1 algorithm. However Paxos has been shown to be difficult to fully understand, let alone to
implement. The difficulties related to Paxos has spawned much work over the years in trying to make

1https://en.wikipedia.org/wiki/Paxos_(computer_science)

https://en.wikipedia.org/wiki/Paxos_(computer_science)
https://en.wikipedia.org/wiki/Paxos_(computer_science)


CS138 Project 3: Raft 11:59 PM, Apr 11, 2017

it a more practical protocol. In this spirit, a group of researchers at Stanford (Diego Ongaro and
John Ousterhout) have developed the Raft protocol2, which is what you will be implementing in this
project. Raft is a consensus protocol that was designed with the primary goal of understandability
without compromising on correctness or performance (when compared to protocols like Paxos.)

The Raft creators and others have created numerous resources about how the protocol works. As we
saw in class, the visualization from The Secret Lives of Data3 is a great introduction to the protocol.
In addition to this the official Raft website1 has numerous resources available. We urge you to
reference the “In Search of an Understandable Consensus Algorithm (Extended Version)”4 paper for
further details about the protocol. We have taken some bits from the paper and included them in
this document for your reference. Lastly, if you would like to learn even more we suggest you look
at Diego Ongaro’s dissertation5, where he discusses in more detail topics such as how clients should
interact with a Raft cluster, etc.

Software that makes use of Raft usually works by interpreting the entries in the log as input to a
state machine. For this project, we have provided you with code that will calculate the next step of
a hash chain6 each time it finds an Add command in the log, based on a starting value sent by
an Init command. When you move on to implementing the fourth project, Puddlestore, you will
replace the hash chain operations and commands with ones more relevant to implementing a file
system.

2 Raft Overview

A Raft cluster typically contains either three or five servers, which can continue to make progress as
long as bN/2c+ 1 nodes remain live. An odd number of servers reduces the chances of split votes in
the election phase. Each server is responsible for running the Raft state machine.

The Raft protocol can be broken down into two major components that you will have to implement:
Leader Election and Log Replication.

For your reference we have included a summary of the Raft protocol state transition diagram in
Figure 1 and a cheatsheet summary of the consensus algorithm in Figure 2.

Figure 1: This figure is from the Raft paper, it describes the Raft state transition.

2http://raft.github.io/
3http://thesecretlivesofdata.com/raft/
4https://ramcloud.stanford.edu/raft.pdf
5https://github.com/ongardie/dissertation/blob/master/online.pdf?raw=true
6https://en.wikipedia.org/wiki/Hash_chain

2

http://raft.github.io/
http://thesecretlivesofdata.com/raft/
https://ramcloud.stanford.edu/raft.pdf
https://github.com/ongardie/dissertation/blob/master/online.pdf?raw=true
https://en.wikipedia.org/wiki/Hash_chain
http://raft.github.io/
http://thesecretlivesofdata.com/raft/
https://ramcloud.stanford.edu/raft.pdf
https://github.com/ongardie/dissertation/blob/master/online.pdf?raw=true
https://en.wikipedia.org/wiki/Hash_chain


CS138 Project 3: Raft 11:59 PM, Apr 11, 2017

2.1 Leader Election

Leader election consists of a Raft cluster deciding which of the nodes in its cluster should be the
leader of a given term. A node starts out in Follower state and if it does not receive a heartbeat
within a predefined timeout it transitions into Candidate state. Once in the Candidate state a
node votes for itself and sends vote requests to everyone else in the cluster. To a first approximation,
if a node receives a vote request before casting a vote for someone else in that term, then they cast
a vote for the requester. If the node receives a majority of votes, then it moves to the Leader
state. Once in the Leader state, the node appends a no-op to the log (§8 of the paper) and sends
out heartbeats (AppendEntriesRPC’s) to everyone else, so that the other nodes know who the new
leader is.

The description of voting for a Candidate above is simplified, as there is an extra condition: the
correctness of Raft depends on a couple of related mechanisms. A node votes for a candidate if it
hasn’t voted for anyone else in the election term, and if the log of the candidate is at a higher term,
or, if in the same term, at least as complete as the voter’s log.

2.2 Log Replication

Log replication consists of making sure that the Raft state machine is up to date across a majority
of nodes in the cluster. It is based on the AppendEntries RPC, periodically initiated by the leader.
The leader accepts requests from clients, adds entries to its log, replicates these entries to a majority
of the nodes, commits the entry to the log to allow the received followers to feed the entry to their
state machines, and then replies to the clients.

Raft leaders are responsible for tracking what log entries have been successfully sent to each node,
and don’t let the replicated state machines use log entries until they have been propagated to a
majority of the nodes. Again, refer to the Raft paper and to Figure 2 for details.

2.3 Client Interaction

Followers, candidates, and a leader form up a Raft cluster, which serves Raft clients. A client
establishes a session with the Raft clusters by sending a RegisterClientRPC request, and the log
index of the entry corresponding to this request will be the Client ID returned to the client after
the entry has been committed. The client then sends requests to the clusters and gets replies with
the results once the corresponding log entries have been committed and fed to the state machine.

If the Raft node a client connects to is not the leader node, the node returns a hint of the leader
node, and the client follows the hint to reach the leader, and this process will be tried multiple
times in case of in-progress elections. A request is cached with the Client ID and a request serial
number to avoid being executed twice due to retransmissions.

The full implementation of the client has been provided in the stencil code. Refer to the source
code for details.

3



CS138 Project 3: Raft 11:59 PM, Apr 11, 2017

2.4 Other Components

There are other components to building a fully functional Raft cluster, and most of these components
your TAs have implemented for you in the support code. For example, we have provided you with a
way to use stable storage and code for managing clients that want to interact with the replicated
state machine.

3 Implementation

3.1 Raft protocol implementation

For this project, you will be implementing the majority of the state machine from the Raft protocol.
We have provided a lot of the framework to help you concentrate on the core interactions between
Raft nodes. You will be implementing:

• Elections (RequestVoteRPC)

• Log replication (AppendEntriesRPC)

• Client Registration

• Client Requests

• GRPC Client and Server Wrappers

In the stencil code, you’ll see three high level packages:

• raft: the core Raft protocol

• hashmachine: a state machine based on a hash chain

• client: a client API for the raft package

Further, you’ll see a cmd directory, with two packages inside: raft-cli, which is a CLI for a Raft
client, and uses the client package above, and raft-node, a CLI to create and control a Raft node.
This pattern of storing multiple binaries in a cmd directory is a common pattern in Go.

The example client in raft-client can control the hash chain implementation in hashmachine.
The code you must write is marked with // TODO: Students... comments and is located in various
files in the raft directory. Feel free to add whatever support code you need, but try not to change
the public APIs too much.

You should implement the following functions:

• func (r *RaftNode) doFollower() stateFunction

• func (r *RaftNode) doCandidate() stateFunction

• func (r *RaftNode) doLeader() stateFunction

4



CS138 Project 3: Raft 11:59 PM, Apr 11, 2017

���������	�
������
��� 
����
������
�� �������

���������	

���� 
������
���� 
���

���������	� 
������
��������
���� ��
�


����
�	���� ���������
������
���� ���
�������
�	��������


����
����� 
�������
������
���� ���
�������
�	��������

����
��	

���� 
�����
 ���!�����
������
�� 
���"��
���
����

�
��������� 
����������
������
�� ��
��������
�

�����
������
����������	

�� #�"�	����������
����$�
�����
 ��� ������

%� �����
��&�� �����������
������
���!� ����
������
���� ��������
�

����
�����"'
�'��
�� �����
�������� ���!�����
���
�������!������

����������� ���

���������	��������
����"��
�
�� ������
����� ����(�)��������������

����
���
��������

���������	

���� ���������
���


�����	� ��������*��� 
���������

�
����
�

�����
�	���� ���������������
�	��������
��	� "��
������

��*�����

�����
����� 
�������"���+������� ��
�	

��������� ������
����� 
���
�������"
	� ��������
���
)�

��	�����������
����������������
���
	�


������
���� ���������
����
�����

����
��	

���� 
�����
 ���!������������
���"��
���
����

������� 
������������*���
��
������ ��
�	���

�����

"���+������� ����"���+�� ���

�����
������
����������	

�� #�"�	����������
����$�
�����
 ��� �������

%� #�"�	��������������������
� 
��
���������
�	��
�"���+�������

*����� 
������

����"���+�� ��� ����(�

�� ����������
���� ��
�	�
�����

��*�
������*�����������������

��
���������
� 
�����!�����
�� 
�������
���� ��
�	���������
��
�

�����*� �
�����(�

�� ,""���� ��	���*���
�������
�������	����
������

(� ���������-����
 .�
����
�����!� ��
�
����
����� /�

����������-����
!� ������������
���*���
�	�

����������������

����������� ����������

����
���	

�0"��
�������
������
����������������"������� 
��#1-��

����������� ��
��
�
������������������������
����2��� 
��3�

�������
����
!���
�����������
���
���	�

�
����
� 
������
��� 
��
���
������ ��
�����
�����
�


���������������������



��� ������
����)� ��
����
�	�
��
�����
�������

�����
�
����
����!� ����
����*������
�	�

*�����
�������	�������������
������������

��
���
������������

����
���	

�
����	���� ���������������
� ������
�	����*��
�����


����

��� ����
����2��� 
��3!���
�������

����
���
���	�


������
��� ���������������
� ������
�	��""�����
���
�
��

��
����� ����
����2��� 
��3!���
�������

����
���
���	�

��
���
�����������
������	

�#����
����2��� ��
������

����

����	������ ������
��������!����������
������
�������
�	�


������� 
��
��
������������
����2��� 
���������

���
�����������4���

�����	������ ������
��������!����������������
� ������
�	�

���*��
�������"��
�
�������������

����
����2��� 
��3!���
�����������
���
���	�

�����

�

����
���	

� ���
����
����� .����
,""����5� ��
�����
� ���
,""����!� �""�	�

���6���
,""����7� 
���
�
����
����� ����(��

� ���#1-�������
�������"����� 
��
����� 
���� �.�
�����
 ���5

��
�
�����
 ��� /� !�
�����
� 
�������*��� ������

��

������ ������	

� #��"���� 
��#1-�������
������
��� �����������

� ������

���� 
�����
����"����*�
���
� ��
�������,""���8�
����

#1-������
�����
���������������
������
��
��
������
�5�


�����
� 
��
������
�

����������� ������	

� ���
���������� 
��
������
�!��
��
����

���5

� ��
�����
� 
�����
 ���

� 9�
����������

� #���
����

���� 
����

� :����#�����
9�
� #1-��
�������
�����������

� �����
��� ��
������ �������;���
	�����������5� ��
���� ������

� ���,""���8�
���� #1-���
������ �������*�������5�
�����
� 
��

�����*��

� ������

���� 
�����
����"���5� �
��
���*����

���

�������	

� 0"������

���5� ��������
������"
	�,""���8�
���� #1-�

�����
���
��
����
��������)���"��
�������������"������� 
��

"�����
� ���

���� 
�����
�� ������

� ���
������� ��
������ �����
����
5� �""������
�	�
����
������!�

���"���� ��
�����
�	��""�����
���
�
����
����� ����(�

� ������
�����������<����
����� �����������*��5� �����

,""���8�
����� #1-�*�
��������
����� �
��
�����
����
������

� �����

������5� �"��
�����
����� ������

������ ����

�����*��� ����(��

� ���,""���8�
���� ��������
��������������
�����
��
	5�

��
�����
� ���
����� ������
�	�����(��

� ���
���������
�� ���=���
��
��
�=�.�
����
�����!� ����;���
	�

�����

������6�7� < =!��������6=7�
����//�
�����
 ���5

��
�
����
����� /�=�����(!�������

��
����������
���

Figure 2: This figure is from the Raft paper, and helps summarize a lot of the important details in
the protocol. If you find a note particularly confusing, refer to the section specified (e.g., §3.5).

5



CS138 Project 3: Raft 11:59 PM, Apr 11, 2017

Each of these functions should contain the logic for the Raft node being in one of the three Raft
states: Follower, Candidate, Leader. You can transition to another state by returning that
state function. For example, doLeader() could be written to always transition to the Follower
state:

func (r *RaftNode) doLeader() state {
return r.doFollower

}

When an RPC is received, the request is forwarded over a channel so that the function of the
appropriate state can determine how it should be interpreted. For example, the following code
would always reply successful to an AppendEntriesRPC:

for {
select {
case msg := <-r.appendEntries:

msg.reply <- AppendEntriesReply{
r.GetCurrentTerm(),
true,

}
}

}

The full list of channels you should handle are:

• RaftNode.appendEntries

• RaftNode.requestVote

• RaftNode.registerClient

• RaftNode.clientRequest

• RaftNode.gracefulExit

We’ve also provided example helper function signatures for you to fill in. Feel free to ignore them if
they don’t fit into your code, or if you want to change their signatures. They are:

• func (r *RaftNode) handleAppendEntries(msg AppendEntriesMsg)
(resetTimeout, fallback bool)

• func (r *RaftNode) requestVotes(electionResults chan bool, currTerm uint64)

• func (r *RaftNode) handleCompetingRequestVote(msg RequestVoteMsg) (fallback bool)

• func (r *RaftNode) sendHeartbeats() (fallback, sentToMajority bool)

• func randomTimeout(minTimeout time.Duration) <-chan time.Time

6



CS138 Project 3: Raft 11:59 PM, Apr 11, 2017

In addition to the structure we provide in these functions, we also provide stencil code to deal with
persisting Raft state and log entries to disk. This means that you can kill and restart a Raft node,
and it’ll start up again with the same persistent state (current term, list of other nodes, outstanding
client requests, etc.) and log entries as it had before.

Note that a Raft node is uniquely identified by its listener port in this scheme. So if you start up a
new node that has the same port as a node that was running before which had its state saved to
disk, this new node will appear with the same state as the old node. To avoid this, you can either
ensure that new nodes you start have distint ports, or you can delete the raftlogs directory which
contains this persisted data between runs of Raft.

Finally, you’ll need to implement certain gRPC functions as in Tapestry. See the next section for
more details.

3.2 gRPC implementation

Both Chord and Tapestry used gRPC, Google’s library for RPC, to facilitate communication between
nodes over the network. In this project, we also use gRPC, but this time we’re asking you to
implement more of the RPC code yourself.

In particular, we provide you with a Protocol Buffers (Protobuf) file, raft_rpc.proto, which defines
what RPC calls Raft can deal with, along with what information should be passed into and returned
from those calls. We ask you to use this file to generate a Go file that will define all the relevant
RPC calls and structs for use in the rest of your Go code.

3.2.1 Protobuf file

To do this, you must first install the Go protobuf compiler, by running:

$ go get -u github.com/golang/protobuf/protoc-gen-go

You can then compile raft_rpc.proto to a file called raft_rpc.pb.go by running:

$ /course/cs1380/bin/cs138_protoc -I . ./raft_rpc.proto --go_out=plugins=grpc:.

(Note that on your own machines, you can install and run protoc using Homebrew on Mac, and
Launchpad on Ubuntu. For Windows, we recommend compiling the file on the CS machines using
the above command, and then copying it to your local computer and moving it into your raft folder.)

It may seem somewhat unnecessary to learn an entirely new syntax to write a file like this just to
immediately compile it to Go. You might wonder, why not just write the Go file that defines the
RPC interface to begin with?

The main reason one would use Protobufs and gRPC for a system like this is to provide easy
cross-platform compatibility. Because Protocol Buffers defines a standard, language-agnostic syntax,
we could easily use their tools to generate similar RPC implementation files in other languages.

For instance, we could compile Raft’s protocol buffer file into JavaScript, and then with very little
work we could use that in a JavaScript application to make requests directly to our Raft nodes!

7

https://developers.google.com/protocol-buffers/
http://brewformulas.org/Protobuf
https://launchpad.net/ubuntu/+source/protobuf


CS138 Project 3: Raft 11:59 PM, Apr 11, 2017

Even though our Raft implementation is in Go, we could use this to easily make a web-app that
interacts directly with our Raft cluster.

In fact, we will give extra credit to any group that does exactly this: create a web interface for
Raft, that for a given Raft node displays some information about the node and some interactive
functionality to change the behavior of the node. Enabling and disabling communication (via
NetworkPolicy) could be a fairly straightforward such functionality, and it would require minimal
changes to the RPC interface in raft_rpc.proto.

3.2.2 gRPC Client and Server functions

In addition to compiling the Protobuf file yourself, we also ask that you implement the client and
server sides of each RPC function. The client function takes in parameters, marshalls it if needed to
the required gRPC format, and then sends it over the wire to another node, addressed by its IP
address and port.

On the other side, the server function is responsible for handling incoming requests from gRPC,
passing off the provided data to the local implementation, and then returning the desired output
data in the form that gRPC expects.

We’ve already defined the type signatures for each of these functions, and they can be found in
raft_rpc_client.go and raft_rpc_sever.go respectively. You are responsible for filling in the
functions in both of those files that are marked with // TODO: Students....

We have provided one filled-in function in both files, which you can use as a guide for the rest of
the functions. Much of this implementation will be simply error checking and marshalling data
to gRPC formatting. Importantly, you must also use these functions to check if connections are
allowed between the two nodes trying to communicate. The inline comments in these files and the
“Testing” section later in this handout have more details.

The reason we ask you to fill in these two sides of the RPC system is to get you comfortable with
the details of making and responding to gRPC requests. Though the code you write here is not the
most exciting, it is important! Error handling, especially along the network barrier where many
error cases can appear, is some of the most important code you will write to maintain a robust,
reliable system. This is also good practice for your final project, Puddlestore, where you’ll define
the entire RPC protocol and associated functions yourself.

4 Testing

We expect to see several good test cases. This is going to be worth a portion of your grade.
Exhaustive Go tests are sufficient. You can check your test coverage by using Go’s coverage tool7.

To help you test out the behavior of your implementation under partitions, we have provided you
with a framework which allows you to simulate different network splits. You can find the relevant
code under network_policy.go, and see how it can be used in raft-node. To use it, you first have
to implement the RPC client and server functions, and explicitly check if connections should be
allowed between two servers that try to talk to each other. Once that’s implemented, you can use
each RaftNode’s NetworkPolicy struct in your tests to simulate network splits of different kinds.

7http://blog.golang.org/cover

8

http://blog.golang.org/cover
http://blog.golang.org/cover


CS138 Project 3: Raft 11:59 PM, Apr 11, 2017

Note that the logs of the nodes are stored on disk, which ensures the nodes can resume their states
after reboots, You will want to remove the logs if you want to start up some fresh nodes with the
same ports, presumably in your unit tests.

4.1 Building and Running

Once you’re in your repo’s higher level raft directory, to get Raft to build, you must first update
your dependencies, like so:

$ go get -u ./...

Then, you can build and install our two binaries, raft-node and raft-client, by running:

$ cd cmd
$ go install ./...

This generates two CLIs and places them in your $GOPATH/bin:

• raft-node: this is a CLI that serves as a console for interacting with Raft, creating nodes
and querying state on the local node(s). We have kept the CLI simple but you are welcome to
improve it as you see fit.
You can pass the following arguments to raft-node:

– -p <port>: The port to start the server on. By default selects a random port.
– -c <addr>: Address of an existing Raft node to connect to
– -d=true: Enable or disable debug

You get the following set of commands available to you in the terminal:

– debug <on|off>: turn debug messages on or off.
– enable all | enable <send|recv> <addr>: enables sending or receiving RPCs from

an address, or from all addresses.
– disable all | enable <send|recv> <addr>: disables sending or receiving RPCs from

an address, or from all addresses.
– state: prints out the local node’s view of the cluster’s state.
– log: print out the current list of logs.
– leave: gracefully leave the cluster.
– exit: quit the CLI.

• raft-client: this is a sample client which allows you to connect to a Raft node and issue
commands to the hash state machine. You get the following commands:

– init <value>: send an value to initialize the hash machine with.
– hash: instruct the state machine to perform another round of hashing.

You’re encouraged but not required to write further client applications, using the client package if
your application is in Go, or generated gRPC functions in another language otherwise.

9



CS138 Project 3: Raft 11:59 PM, Apr 11, 2017

5 Style

CS 138 does not have an official style guide, but you should reference “Effective Go” for best
practices and style for using Go’s various language constructs.

Note that naming conventions in Go can be especially important, as using an upper or lower case
letter for a method name affects the method’s visibility outside of its package.

At a minimum, you should use Go’s formatting tool gofmt to format your code before handing in.

You can format your code by running:

gofmt -w=true *.go

This will overwrite your code with a formatted version of it for all go files in the current directory.

6 Getting Started

To get started, you will want to merge in the Raft support code:

git remote add stencil https://github.com/brown-csci1380/stencil-s17.git
git pull stencil master

Then perform a global find-and-replace to change import paths from those pointing to stencil-s17
to your group’s repository.

Next, follow the instructions in the gRPC section above to generate a Go file from the Protobuf file:

$ /course/cs1380/bin/cs138_protoc -I . ./raft_rpc.proto --go_out=plugins=grpc:.

Finally, you can follow the instructions from the “Building and Running” section to get going.

7 Extra Credit

If you’re in a 3-person group, your group must implement one additional feature and demonstrate it
works (via tests, a CLI, or benchmarks.) 2-person groups can start thinking about these too, as
you’ll have to implement them for an A-level design of your final project, Puddlestore.

Some ideas for extra credit include:

• Membership Changes (§6 of the Raft paper and §4 of the dissertation)

• Log Compaction (§7 of the Raft paper and §5 of the dissertation)

• Web application to control and interface with a Raft node (using gRPC)

• Snapshots, using the Chandy-Lamport or another algorithm

If you choose to implement one of these, please drop by TA hours or email the TA list to discuss
you plan first, and get any questions answered.

10

`https://golang.org/doc/effective_go.html
https://golang.org/cmd/gofmt/


CS138 Project 3: Raft 11:59 PM, Apr 11, 2017

8 Handing in

You need to write a README, documenting your tests, any bugs in your code, any extra features
you added, and anything else you think the TAs should know about your project. Once you have
completed your README and project, you should hand in your raft by running

/course/cs1380/bin/cs1380_handin raft

to deliver us a copy of your code.

Please let us know if you find any mistakes, inconsistencies, or confusing language in this or any
other CS138 document by filling out the anonymous feedback form:

http://cs.brown.edu/courses/cs138/s17/feedback.html.

11

http://cs.brown.edu/courses/cs138/s17/feedback.html

	Introduction
	Raft Overview
	Leader Election
	Log Replication
	Client Interaction
	Other Components

	Implementation
	Raft protocol implementation
	gRPC implementation
	Protobuf file
	gRPC Client and Server functions


	Testing
	Building and Running

	Style
	Getting Started
	Extra Credit
	Handing in

