
CS 134 – Innovating Game Development – Course Project Proposal v3 Hydromancy – 3/11/08

1 Basics

This section lays out the basics of our project.

Title: Hydromancy

Tagline: This game is a series of tubes

Team: Joshua Dawidowicz (jdawidow), Jesse Errico (jerrico), Jacob Frank (jfrank), Michael Feldman
(mcfeldma), Micah Lapping-Carr (mlapping)

Core ideas/concepts: In Hydromancy, the player is presented with a series of 3D puzzle levels in which
he must eliminate all of the fire in the level before continuing. In doing so, the player must make use of
a number of tools, objects, and fluids. Each fluid is simulated at an extremely realistic level; each obeys
Navier-Stokes equations for fluid dynamics and Snell’s law for light refraction. The simulation should be
as close to actual physics as possible, and at the very least observe the law of least astonishment. To do
so, we will use an external library which employs computational fluid dynamics (CFD) rather than more
simple particle-based simulations. Further, the user may interact with the environment using a mouse and
keyboard or Wiimote and Nunchuk; the Wiimote/Nunchuk combination will employ the Wiimote’s infrared
sensor and both controllers’ accelerometers. A wide variety of fluids will be used, including water and other
standard Newtonian fluids and non-Newtonian fluids such as a water/cornstarch mix; gasses may be included
as well. Fluids will interact fully with the environment as governed by realistic laws of physics and the law
of least astonishment, and will also be guided by additional characteristics such as flammability to allow
further interaction with the environment.

1



CS 134 – Innovating Game Development – Course Project Proposal v3 Hydromancy – 3/11/08

2 Statement of Requirements

This section describes the requirements for the project independent of implementation concerns.

The following are basic requirements for Hydromancy:

• A simple user interface for both mouse/keyboard and Wiimote/Nunchuk to manipulate objects and
fluids in 3D

• Identify when a level has been completed or failed, notify the user, allocate score, and load the subse-
quent level (in the case of a failed level, reload the current level). Levels are always running (but can
be reset); there is no “paused” mode

• A level editor using controls similar to those found in the normal game mode, allowing the user to save
and later play through player-created content

• Average a framerate of above 15 FPS on MSLab computers

• Audible audio cues for object manipulation (click sounds on mouseover, select, drag, drop, menu items;
contextual sounds for interactive objects)

• Compatible with the following hardware: Wiimote and Nunchuk, Bluetooth reciever

• A pause menu accesible during gameplay with the ability to restart a level, quit a level to the main
menu, and change user options (see below)

• A main menu accesible at startup and after quitting a level with the ability to start a selected level,
create a new level, change user options (see below), exit the game, or view credits

• Configurable user options including sound, graphics, and input configurations

The following are features which may be added given sufficient time but are not required:

• Tutorial level that explains gameplay and user interactions with voiceover and visual cues (e.g. player
loses control of mouse and watches a scripted AI solve the tutorial level, with voiceover)

3 Design

This section lays out a plan for the architecture of the project independent of technical considerations.

Our overall design will have the World at the top level. This class will handle all of startup functionality,
such as initializing all the libraries, parsing a level’s XML with the XML Manager, creating the objects
of the level from factory methods, updating the game state with the Physics class while the game itself
is running, and rendering this state. The World class will also manage the input from the user using an
InputHandler.

The XML Manager will use a method to load a level into the World, and a method to save a level to
disk. The details within the XML file will be the models and their locations/orientations, the graphics and
textures required, the background music and sound effects, and other metadata.

The Physics module will intermittently update the physics of every object in the scene and update
graphical information; during rendering, object position information is read from the physics data to update
the graphical nodes in Irrlicht.

The objects in the scene will be derived from either Solids or Fluids. Solids will have methods to get
and update their rotational and translational matrices. Also, Solids will need a method to perform the
various interactions necessary for the user, such as rotating, translating in the film plane, and translating
along the Z axis. Each Solid will also keep track of its corresponding model and mesh. Fluids are more
complicated: they must have a variety of parameters, set at creation time but still modifiable, and a method

2



CS 134 – Innovating Game Development – Course Project Proposal v3 Hydromancy – 3/11/08

to get the current mesh representation, for rendering. Their dynamics will be controlled by a customized
fluid dynamics library (below). Interactive solids also have additional characteristics that can be enabled by
the user (e.g. a fan that can be turned on and off).

User input is handled with Irrlicht input listeners (mouse and keyboard) and a custom Wiimote listener,
both of which feed data to a wrapper class to simplify interactions from the object/fluid end. These inter-
actions will include selection of tools, rotation/translation of tools, manipulation of physics, and interaction
with the GUI and menus.

The fluid dynamics library will make a series of particles behave as though they are simply molecules in
a larger fluid. Our library will take into account density, viscosity, velocity fields, and interaction with other
fluids and objects. We will accomplish this using three-dimensional matrices in which each cell represents a
particle and each particle acts upon its neighboring ones (subject to change; see below).

4 Implementation

This section adds technical details to the design and covers code architecture.

System basics:

• Language: C++

• Development tools: Visual Studio 2005, MilkShape for 3D models (converted to .3ds format for com-
patibility)

• Operating System: Windows XP and Vista

• Engine: Irrlicht

• Physics Library: AGEIA PhysX SDK. This will be used for rigid-body dynamics.

• Fluid Dynamics: We will implement our fluids using AGEIA’s smoothed particle hydrodynamics engine
(which does not do Navier-Stokes computational fluid dynamics). We will also research an implemen-
tation of Jos Stam’s 2003 GDC paper (and possibly a Eurographics Workshop paper Realistic Water
Volumes in Real Time or Mick West’s Practical Fluid Dynamics from Game Developer Magazine). If
this proves to be feasible in 2D, we will experiment with it in 3D, and if this proves feasible, we will
replace AGEIA with our own library.

• Audio Library: FMOD

• Wiimote Library: Wii Yourself (Windows Wiimote API - http://wiiyourself.gl.tter.org/)

3



CS 134 – Innovating Game Development – Course Project Proposal v3 Hydromancy – 3/11/08

4.1 UML Diagram

4.2 Explanation of Architecture

This section explains the implementation as shown in the UML diagram above.

• World: Central class of the program. The World is the first class that is instantiated and is respon-
sible for initializing all of the other classes. Once a level is loaded through the XMLManager, the
World runs the drawing and updating loop until the level is complete or the program is closed. The
World will contain instances of classes from libraries including an IrrlichtDevice, an ISceneManager,
an IVideoDriver, an IGUIEnvironment, a FMOD::System, and a NxPhysicsSDK.

• InputHandler: Takes input captured from the InputEventListener and WiimoteListener and trans-
lates it into changes in the World. The InputHandler will be able to find a Solid given an (x, y) screen
location and manipulate that object as the user desires.

• WiimoteListener: Captures input from a wiimote and calls appropriate methods in the InputHandler.
The WiimoteListener will be a wrapper around Wii Yourself, an external library that is freely available.

• XMLManager: Loads levels written in XML to the World. The XMLManager will use the World’s
factory methods to create Solids, InteractiveSolids, and Fluids, and specify a victory condition. The
XMLManager will contain an IXMLReader and an IXMLWriter from Irrlicht.

4



CS 134 – Innovating Game Development – Course Project Proposal v3 Hydromancy – 3/11/08

• Physics: Given a list of Solids and Fluids, this will update the World on what the next state is. This
class will also include functions for computational fluid dynamics.

• Solid: Represents a single solid physics object in the game, such as a length of pipe or a basin.
Solids will be generated from either factory methods in the World class, since they only require a list
of primitives and material properties to be generated, or from existing models created in Milkshape.
These models require more complex structures than what can easily be created using Irrlicht and PhysX
primitives, but their corresponding meshes will have to be created at import-time by the engines. Some
Solids may be translated and rotated by the user. The Solid will be a subclass of ISceneNode, and
contain instances of the classes needed by Ageia’s NxPhysicsSDK.

• InteractiveSolid: Reperesents a Solid that the user can “turn on” or otherwise interact with outside
of translation and rotation. The Interactive Solid will be a subclass of Solid.

• Fluid: Represents a fluid in the same way the Solid class represents a solid object. There will be one
Fluid per type of fluid in the simulation. For example, all the water in a level will be one instance of
Fluid, and all the oil will be another instance. The Fluid will be a subclass of ISceneNode and contain
instances of the classes needed by Ageia’s NxPhysicsSDK. PhysX provides methods to access a mesh
that Irrlicht can render.

5 Division of Labor

This section divides the workload among each team member.

• Graphic art and models (3D models and meshes, background images, textures, GUI, promotional):
Josh

• Wiimote, user interaction: Micah

• Sound: Mike

• Widgets (music, GUI miscellania, add-ons, etc.): Josh

• XML and level IO: Jake

• GUI: Mike and Jesse

• Physics: All

• Engine and integration: Mike and Jesse

6 Testing Plan

This section lays out a series of feature, integration, and regression tests to perform over the course of the
project.

• Physics:

Collisions of two or more rigid objects

Fluid generation and removal

Fluid flow in free-fall

Fluid flow over single primitives of various material types

Mixture of fluids

Additional properties of fluids (e.g. oil is in fact flammable)

5



CS 134 – Innovating Game Development – Course Project Proposal v3 Hydromancy – 3/11/08

Timestep is sufficiently small for accuracy without slowing the movement down too much

Framerate is within parameters on stress test (50+ objects and multiple fluid bodies on screen at
once)

• Graphics

Graphical representation of fluids and solids matches their physics engine equivalent

Light is properly refracted/reflected with fluids

User’s cursor is always visible

Context highlighting takes place and is of the correct object, framerate is within paremeters

• XML I/O:

Levels and objects are properly saved and loaded without any loss of information

Invalid files are caught and the GUI reflects this

• Input:

Mouse, keyboard, and Wiimote fulfill all functionality requirements

No movement glitches occur

The object under the cursor is always selected when clicked on

The user cannot place collidable objects inside of each other

Object rotation and translation works with no skipping.

7 Project Timeline/Milestones

This section provides a timeline for achieving project milestones and realizing deliverables.

• 3/21 - Prototype due today. Particle fluid dynamics implemented, basic rendering of fluid as particles
without textures/refraction, basic mouse and keyboard interaction.

• 4/4 - Computational fluid dynamics functional. Rendering of fluids functional (solids and fluids look
and act properly).

• 4/11 - Computational fluid dynamics complete (gases and liquids), Wiimote integrated, user interaction
complete (but not yet fine-tuned), sound functional.

• 4/18 - Full support for models, levels, and XML.

• 4/25 - Art week (images, models, textures, levels), resolution of any remaining major issues, code
cleanup.

• 5/2 - Debug and wrap up any loose ends.

• 5/6 - Final version and demo.

• 5/12 - Postmortem

6



CS 134 – Innovating Game Development – Course Project Proposal v3 Hydromancy – 3/11/08

8 Evaluation Criteria

This section contains a rubric for evaluation of the finished product.

• Physics (30%)

AGEIA Library for rigid body physics (5%)

CFD and Fluid Rendering (20%)

Interaction between the libraries (5%)

• Control (20%)

Basic Keyboard/Mouse interaction (7%)

Wiimote Interaction (13%)

• Gameplay (25%)

Ease of Use (5%)

GUI and Menus (5%)

Level Design (8%)

Victory Conditions (2%)

Level I/O (5%)

• Graphics & Art (15%)

Models (5%)

Game Art (5%)

Collision Detection for Custom Meshes (5%)

• Music and Sound (10%)

7


