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Abstract

Interactive digital matting, the process of extracting a
foreground object from an image based on limited user in-
put, is an important task in image and video editing. From
a computer vision perspective, this task is extremely chal-
lenging because it is massively ill-posed — at each pixel
we must estimate the foreground and the background col-
ors, as well as the foreground opacity (“alpha matte”) from
a single color measurement. Current approaches either re-
strict the estimation to a small part of the image, estimating
foreground and background colors based on nearby pixels
where they are known, or perform iterative nonlinear es-
timation by alternating foreground and background color
estimation with alpha estimation.

In this paper we present a closed form solution to nat-
ural image matting. We derive a cost function from lo-
cal smoothness assumptions on foreground and background
colors, and show that in the resulting expression it is possi-
ble to analytically eliminate the foreground and background
colors to obtain a quadratic cost function in alpha. This
allows us to find the globally optimal alpha matte by solv-
ing a sparse linear system of equations. Furthermore, the
closed form formula allows us to predict the properties of
the solution by analyzing the eigenvectors of a sparse ma-
trix, closely related to matrices used in spectral image seg-
mentation algorithms. We show that high quality mattes can
be obtained on natural images from a surprisingly small
amount of user input.

1. Introduction
Natural image matting and compositing is of central im-

portance in image and video editing. Formally, image mat-
ting methods take as input an imageI , which is assumed to
be a composite of a foreground imageF and a background
imageB. The color of thei-th pixel is assumed to be a lin-
ear combination of the corresponding foreground and back-
ground colors,

Ii = αiFi +(1−αi)Bi , (1)

whereαi is the pixel’s foreground opacity. In natural image
matting, all quantities on the right hand side of thecom-
positing equation(1) are unknown. Thus, for a 3 channel

color image, at each pixel there are 3 equations and 7 un-
knowns.

Obviously, this is a severely under-constrained problem,
and user interaction is required to extract a good matte.
Most recent methods expect the user to provide atrimap
as a starting point; an example is shown in Figure 1(e). The
trimap is a rough (typically hand-drawn) segmentation of
the image into three regions: foreground (shown in white),
background (shown in black) and unknown (shown in gray).
Given the trimap, these methods typically solve forF , B,
and α simultaneously. This is typically done by iterative
nonlinear optimization, alternating the estimation ofF and
B with that of α. In practice, this means that for good re-
sults the unknown regions in the trimap must be as small
as possible. As a consequence, trimap-based approaches
typically experience difficulty handling images with a sig-
nificant portion of mixed pixels or when the foreground ob-
ject has many holes [15]. In such challenging cases a great
deal of experience and user interaction may be necessary to
construct a trimap that would yield a good matte. Another
problem with the trimap interface is that the user cannot di-
rectly influence the matte in the most important part of the
image: the mixed pixels.

In this paper we present a new closed-form solution for
extracting the alpha matte from a natural image. We derive
a cost function from local smoothness assumptions on fore-
ground and background colorsF andB, and show that in
the resulting expression it is possible to analytically elimi-
nateF andB, yielding a quadratic cost function inα. The
alpha matte produced by our method is the global optimum
of this cost function, which may be obtained by solving a
sparse linear system. Since our approach computesα di-
rectly and without requiring reliable estimates forF andB, a
surprisingly small amount of user input (such as a sparse set
of scribbles) is often sufficient for extracting a high quality
matte. Furthermore, our closed-form formulation enables
one to understand and predict the properties of the solution
by examining the eigenvectors of a sparse matrix, closely
related to matrices used in spectral image segmentation al-
gorithms. In addition to providing a solid theoretical basis
for our approach, such analysis can provide useful hints to
the user regarding where in the image scribbles should be
placed.
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(a) (b) (c) (d) (e) (f)
Figure 1. (a) An image with sparse constraints: white scribbles indicate foreground, black scribbles indicate background. Applying
Bayesian matting to such sparse input produces a completely erroneousmatte (b). Foreground extraction algorithms, such as [9, 11]
produce a hard segmentation (c). An automatically generated trimap froma hard segmentation may miss fine features (d). An accurate
hand-drawn trimap (e) is required in this case to produce a reasonable matte (f). (Images taken from [15])

1.1. Previous work
Most existing methods for natural image matting re-

quire the input image to be accompanied by atrimap
[1, 2, 4, 5, 12, 14], labeling each pixel as foreground, back-
ground, or unknown. The goal of the method is to solve the
compositing equation (1) for the unknown pixels. This is
typically done by exploiting some local regularity assump-
tions onF andB to predict their values for each pixel in
the unknown region. In the Corel KnockOut algorithm [2],
F and B are assumed to be smooth and the prediction is
based on a weighted average of known foreground and
background pixels (closer pixels receive higher weight).
Some algorithms [5, 12] assume that the local foreground
and background come from a relatively simple color distri-
bution. Perhaps the most successful of these algorithms is
the Bayesian matting algorithm [5], where a mixture of ori-
ented Gaussians is used to learn the local distribution and
thenα, F , andB are estimated as the most probable ones
given that distribution. Such methods work well when the
color distributions of the foreground and the background do
not overlap, and the unknown region in the trimap is small.
As demonstrated in Figure 1(b) a sparse set of constraints
could lead to a completely erroneous matte. In contrast,
while our approach also makes certain smoothness assump-
tions regardingF andB, it does not involve estimating the
values of these functions until after the matte has been ex-
tracted.

The Poisson matting method [14], also expects a trimap
as part of its input, and computes the alpha matte in the
mixed region by solving a Poisson equation with the matte
gradient field and Dirichlet boundary conditions. In the
global Poisson mattingmethod the matte gradient field is
approximated as∇I/(F −B) by taking the gradient of the
compositing equation, and neglecting the gradients inF and
B. The matte is then found by solving for a function whose
gradients are as close as possible to the approximated matte
gradient field. WheneverF or B are not sufficiently smooth
inside the unknown region, the resulting matte might not be
correct, and additional local manipulations may need to be
applied interactively to the matte gradient field in order to
obtain a satisfactory solution. This interactive refinement
process is referred to aslocal Poisson matting. As we shall

see, our method makes weaker assumptions on the behavior
of F andB, which generally leads to more accurate mattes.

Recently, several successful approaches for extracting a
foreground object from its background have been proposed
[3, 9, 11]. Both approaches translate simple user-specified
constraints (such as scribbles, or a bounding rectangle) into
a min-cut problem. Solving the min-cut problem yields
a hard binary segmentation, rather than a fractional alpha
matte (Figure 1(c)). The hard segmentation could be trans-
formed into a trimap by erosion, but this could still miss
some fine or fuzzy features (Figure 1(d)). Although Rother
et al. [11] do perform border matting by fitting a paramet-
ric alpha profile in a narrow strip around the hard boundary,
this is more akin to feathering than to full alpha matting,
since wide fuzzy regions cannot be handled in this manner.

Our approach is closely related to the colorization
method of Levinet al. [7], and the random walk alpha mat-
ting method of Gradyet al. [6]. Both of these methods
propagate scribbled constraints to the entire image by min-
imizing a quadratic cost function. Here we apply a similar
strategy, but our assumptions and cost function are modified
so as to better suit the matting problem.

Another scribble-based interface for interactive matting
was recently proposed by Wang and Cohen [15]. Starting
from a few scribbles indicating a small number of back-
ground and foreground pixels, they use belief propagation
to iteratively estimate the unknowns at every pixel in the
image. While this approach has produced some impressive
results, it has the disadvantage of employing an expensive
iterative non-linear optimization process, which might con-
verge to different local minima.

2. Derivation

For clarity of exposition we begin by deriving a closed-
form solution for alpha matting of grayscale images. This
solution will then be extended to the case of color images in
Section 2.1.

As mentioned earlier, the matting problem is severely
under-constrained. Therefore, some assumptions on the na-
ture ofF , B and/orα are needed. To derive our solution for
the grayscale case we make the assumption that bothF and
B are approximately constant over a small window around



each pixel. Note that assumingF andB are locally smooth
does not mean that the input imageI is locally smooth, since
discontinuities inα can account for the discontinuities inI .
This assumption, which will be somewhat relaxed in Sec-
tion 2.1, allows us to rewrite (1) expressingα as a linear
function of the imageI :

αi ≈ aIi +b, ∀i ∈ w, (2)

wherea= 1
F−B, b=− B

F−B andw is a small image window.
This linear relation is similar to the prior used in [17]. Our
goal in this paper will be to findα, a andb minimizing the
cost function

J(α,a,b) = ∑
j∈I

(

∑
i∈w j

(αi −a j Ii −b j)
2 + εa2

j

)

, (3)

wherew j is a small window around pixelj.
The cost function above includes a regularization term

ona. One reason for adding this term is numerical stability.
For example, if the image is constant in thej-th window,
a j andb j cannot be uniquely determined without a prior.
Also, minimizing the norm ofa biases the solution towards
smootherα mattes (sincea j = 0 means thatα is constant
over thej-th window).

In our implementation, we typically use windows of
3×3 pixels. Since we place a window around each pixel,
the windowsw j in (3) overlap. It is this property that en-
ables the propagation of information between neighboring
pixels. The cost function is quadratic inα, a andb, with 3N
unknowns for an image withN pixels. Fortunately, as we
show below,a andb may be eliminated from (3), leaving us
with aquadraticcost in onlyN unknowns: the alpha values
of the pixels.

Theorem 1 Define J(α) as

J(α) = min
a,b

J(α,a,b) .

Then
J(α) = αTL α, (4)

where L is an N×N matrix, whose(i, j)-th entry is:

∑
k|(i, j)∈wk

(

δi j −
1

|wk|

(

1+
1

ε
|wk| +σ2

k

(Ii −µk)(I j −µk)

))

(5)
Hereδi j is the Kronecker delta, µk andσ2

k are the mean and
variance of the intensities in the window wk around k, and
|wk| is the number of pixels in this window.

Proof: Rewriting (3) using matrix notation we obtain

J(α,a,b) = ∑
k

∥

∥

∥

∥

Gk

[

ak
bk

]

− ᾱk

∥

∥

∥

∥

2

, (6)

where for every windowwk, Gk is defined as a(|wk|+1)×2
matrix. For eachi ∈ wk, Gk contains a row of the form
[Ii ,1], and the last row ofGk is of the form[

√
ε,0]. For a

given matteα we defineᾱk as a(|wk|+1)×1 vector, whose
entries areαi for everyi ∈wk, and whose last entry is 0. The
elements in̄αk andGk are ordered correspondingly.

For a given matteα the optimal paira∗k,b
∗
k inside each

windowwk is the solution to the least squares problem:

(a∗k,b
∗
k) = argmin

∥

∥

∥

∥

Gk

[

ak
bk

]

− ᾱk

∥

∥

∥

∥

(7)

= (GT
k Gk)

−1GT
k ᾱk (8)

Substituting this solution into (6) and denotinḡGk = I −
Gk(GT

k Gk)
−1GT

k we obtain

J(α) = ∑
k

ᾱT
k ḠT

k Ḡkᾱk,

and some further algebraic manipulations show that the
(i, j)-th element ofḠT

k Ḡk may be expressed as:

δi j −
1

|wk|

(

1+
1

ε
|wk| +σ2

k

(Ii −µk)(I j −µk)

)

.

Summing overk yields the expression in (5).

2.1. Color Images

A simple way to apply the cost function to color images
is to apply the gray level cost to each channel separately.
Alternatively we can replace the linear model (2), with a
4D linear model:

αi ≈ ∑
c

acIc
i +b, ∀i ∈ w (9)

The advantage of this combined linear model is that it re-
laxes our previous assumption thatF and B are constant
over each window. Instead, as we show below, it is enough
to assume that in a small window each ofF andB is a lin-
ear mixture of two colors; in other words, the valuesFi in a
small window lie on a single line in the RGB color space:
Fi = βiF1 + (1− βi)F2, and the same is true for the back-
ground valuesBi . In what follows we refer to this assump-
tion as thecolor line model.

Such a model is useful since it captures, for example,
the varying shading on a surface with a constant albedo.
Another example is a situation where the window contains
an edge between two uniformly colored regions both be-
longing to the background or the foreground. Furthermore,
Omer and Werman [10] demonstrated that in many natural
images the pixel colors in RGB space tend to form a rela-
tively small number of elongated clusters. Although these
clusters are not straight lines, their skeletons are roughly
linear locally.



Theorem 2 If the foreground and background colors in a
window satisfy the color line model we can express

αi = ∑
c

acIc
i +b, ∀i ∈ w.

Proof: Substituting into (1) the linear combinationsFi =
βF

i F1 + (1− βF
i )F2 and Bi = βB

i B1 + (1− βB
i )B2, where

F1,F2,B1,B2 are constant over a small window, we obtain:

Ic
i = αi(βF

i Fc
1 +(1−βF

i )Fc
2 )+(1−αi)(βB

i Bc
1+(1−βB

i )Bc
2).

Let H be a 3×3 matrix whosec-th row is [Fc
2 + Bc

2,F
c
1 −

Fc
2 ,Bc

1−Bc
2]. Then the above may be rewritten as:

H





αi

αiβF
i

(1−αi)βB
i



= Ii −B2,

whereIi andB2 are 3×1 vectors representing 3 color chan-
nels. We denote bya1,a2,a3 the elements in the first row of
H−1, and byb the scalar product of first row ofH−1 with
the vectorB2. We then obtainαi = ∑cacIi +b.

Using the 4D linear model (9) we define the following
cost function for matting of RGB images:

J(α,a,b) = ∑
j∈I

(

∑
i∈w j

(

αi −∑
c

ac
j I

c
i − b j

)2

+ ε∑
c

ac2

j

)

(10)
Similarly to the grayscale case,ac andb can be eliminated
from the cost function, yielding a quadratic cost in theα
unknowns alone:

J(α) = αTL α. (11)

HereL is anN×N matrix, whose(i, j)-th element is:

∑
k|(i, j)∈wk

(

δi j −
1

|wk|
(

1+(Ii −µk)(Σk +
ε

|wk|
I3)

−1(I j −µk)
)

)

(12)
whereΣk is a 3× 3 covariance matrix,µk is a 3× 1 mean
vector of the colors in a windowwk, and I3 is the 3× 3
identity matrix.

We refer to the matrixL in equations (5) and (12) as the
matting Laplacian. Note that the elements in each row of
L sum to zero, and therefore the nullspace ofL includes the
constant vector. Ifε = 0 is used, the nullspace ofL also
includes every color channel ofI .

3. Constraints and User Interface
In our system the user-supplied constraints on the matte

are provided via a scribble-based GUI. The user uses a
background brush (black scribbles in our examples) to in-
dicate background pixels (α = 0) and a foreground brush
(white scribbles) to indicate foreground pixels (α = 1).

To extract an alpha matte matching the user’s scribbles
we solve for

α = argminαTL α, s.t.αi = si , ∀i ∈ S (13)

(a) (b) (c) (d)
Figure 2. Matting examples. (a,c) Input images with scribbles.
(b,d) Extracted mattes.

whereS is the group of scribbled pixels andsi is the value
indicated by the scribble.

Theorem 3 Let I be an image formed from F and B accord-
ing to (1), and letα∗ denote the true alpha matte. If F and B
satisfy the color line model in every local window wk, and if
the user-specified constraints S are consistent withα∗, then
α∗ is an optimal solution for the system (13), where L is
constructed withε = 0.

Proof: Sinceε = 0, if the color line model is satisfied in
every windowwk, it follows from the definition (10) that
J(α∗,a,b) = 0, and thereforeJ(α∗) = α∗TL α∗ = 0.

We demonstrate this in figure 2. The first image (fig-
ure 2(a)) is a synthetic example that was created by com-
positing computer-simulated (monochromatic) smoke over
a simple background with several color bands, which sat-
isfies the color line model. The black and white scribbles
show the input constraints. The matte extracted by our
method (figure 2(b)) is indeedidentical to the ground truth
matte. The second example (figure 2(c)) is a real image,
with fairly uniform foreground and background colors. By
scribbling only two black and white points, a high quality
matte was extracted (figure 2(d)).

4. Spectral Analysis
The matting Laplacian matrixL is a symmetric positive

definite matrix, as evident from theorem 1 and its proof.
This matrix may also be written asL = D−W, whereD is
a diagonal matrixD(i, i) = ∑ j W(i, j) andW is a symmet-
ric matrix, whose off-diagonal entries are defined by (12).
Thus, the matrixL is the graph Laplacian used in spectral
methods for segmentation, but with a novel affinity function
given by (12). For comparison, the typical way to define the
affinity function (e.g., in normalized cuts image segmenta-
tion algorithms [13]) is to set

WG(i, j) = e−‖Ii−I j‖2/σ2
, (14)

whereσ is a global constant (typically chosen by hand).
This affinity is large for nearby pixels with similar col-
ors and approaches zero when the color difference is much
greater thanσ. The random walk matting algorithm [6] has
used a similar affinity function for the matting problem, but
the color distance between two pixels was taken after apply-
ing a linear transformation to their colors. The transforma-
tion is image-dependent and is estimated using a manifold
learning technique.



Input image Globalσ eigenvectors Matting eigenvectors
Figure 3. Smallest eigenvectors of the different Laplacians.

In contrast, by rewriting the matting Laplacian asL =
D−W we obtain the following affinity function, which we
refer to as “the matting affinity”:

WM(i, j)= ∑
k|(i, j)∈wk

1
|wk|

(

1+(Ii−µk)(Σk+
ε

|wk|
I3)

−1(I j −µk)
)

(15)
To gain intuition regarding the matting affinity, consider an
image patch containing exactly two colors (e.g., an ideal
edge). In this case, it can be shown (see [8] for a proof) that
the affinity between two pixels of thesamecolor decreases
with distance, while the affinity between pixels ofdifferent
colors is zero. In general, we obtain a similar situation to
that of standard affinity functions: nearby pixels with simi-
lar colors have high affinity, while nearby pixels with differ-
ent colors have small affinity. However, note that the mat-
ting affinity does not have a global scaling parameterσ and
rather uses local estimates of means and variances. As we
show subsequently, this adaptive property leads to a signif-
icant improvement in performance. A similar observation
was also made in [16], which suggests that local adaptation
of the scaling parameter improves image segmentation re-
sults.

To compare the two affinity functions we examine
the smallest eigenvectors of the corresponding Laplacians,
since these eigenvectors are used by spectral segmentation
algorithms for partitioning images.

Figure 3 shows the second smallest eigenvector (the first
smallest eigenvector is the constant image in both cases) for
both Laplacian matrices on two example images. The first
example is a simple image with concentric circles of dif-
ferent color. In this case the boundaries between regions
are very simple, and both Laplacians capture the transitions
correctly. The second example is an image of a peacock.
The globalσ eigenvector (used by the normalized-cuts al-
gorithm) fails to capture the complex fuzzy boundaries
between the peacock’s tail feathers and the background.
In contrast, the matting Laplacian’s eigenvector separates
the peacock from the background very well. The matting
Laplacian in this case was computed withε = 0.0001.

4.1. The eigenvectors as guides
While the matting problem is ill-posed without some

user input, the matting Laplacian matrix contains a lot of

(a) (b) (c) (d)
Figure 4. Smallest eigenvectors (a-b) are used for guiding scribble
placement (c). The resulting matte is shown in (d).

information on the image even before any scribbles have
been provided, as demonstrated in the previous section.

This suggests that looking at the smallest eigenvectors
of the matting Laplacian can guide the userwhere to place
scribbles. For example, the extracted matte tends to be
piecewise constant in the same regions where the small-
est eigenvectors are piecewise constant. If the values inside
a segment in the eigenvector image are coherent, a single
scribble within such a segment should suffice to propagate
the desired value to the entire segment. On the other hand,
areas where the eigenvector’s values are less coherent cor-
respond to more “difficult” regions in the image, suggesting
that more scribbling efforts might be required there.

Stated somewhat more precisely, the alpha matte may be
predicted by examining the smaller eigenvectors of the mat-
ting Laplacian, since an optimal solution to (13) will be to
a large degree spanned by the smaller eigenvectors. In fact
(see [8]), it is possible to bound the weight that the optimal
solution will assign to larger eigenvectors, as a function of
the ratios of the corresponding eigenvalues.

Figure 4 illustrates how a scribbling process may be
guided by the eigenvectors. By examining the two smallest
eigenvectors (fig 4(a-b)) we placed a scribble inside each re-
gion exhibiting coherent eigenvector values (fig 4(c)). The
resulting matte is shown in fig 4(d). Note that the scribbles
in fig 4(c) were our first, and single attempt to place scrib-
bles on this image.

5. Results

We show here results of our closed form solution for
extracting alpha mattes by minimizing the matting Lapla-
cian subject to the scribbled constraints. Since the mat-
ting Laplacian is quadratic in alpha, the minimum can be
found exactly by solving a sparse set of linear equations.
We usually define the matting Laplacian using 3× 3 win-
dows. When the foreground and background color distribu-
tions are not very complex using wider windows is helpful.
However, using wider windows increases computation time
since the resulting system is less sparse. To overcome this,
we consider the linear coefficients (eq. 9) that relate an al-
pha matte to an image. The coefficients obtained using wide
windows on a fine resolution image are similar to those ob-
tained with smaller windows on a coarser image. Therefore
we can solve for the alpha matte using 3× 3 windows on
a coarse image and compute the linear coefficients which
relate it to the coarse image. We then interpolate the lin-



ear coefficients and apply them on a finer resolution image.
The alpha matte obtained using this approach is similar to
the one that would have obtained by solving the matting sys-
tem directly on the fine image with wider windows. More
details are provided in [8].

For the results shown here we solve the matting sys-
tem using Matlab’s direct solver (the “backslash” operator)
which takes 20 seconds for a 200 by 300 image on a 2.8GHz
CPU. Processing big images using the Matlab solver is im-
possible due to memory limitations. To overcome this we
use a coarse-to-fine scheme. We downsample the image and
the scribbles and solve in a lower resolution. The recon-
structed alpha is then interpolated to the finer resolution,
alpha values are thresholded and pixels with alpha close
to 0 or 1 are considered constraints in the finer resolution.
Constraint pixels can be eliminated from the system, reduc-
ing the system size. We have also implemented a multigrid
solver for matte extraction. The multigrid solver runs in a
couple of seconds even for very large images, but with a
small degradation in matte quality.

We show here only the extracted alpha mattes. Note that
for compositing on a novel background, we also need to
solve forF . After the matte has been found, it is possible
to solve for theac and b coefficients directly from equa-
tion (10) and extract the foreground and background from
them. However, we have found that better estimations of
foreground and background are obtained by solving a new
set of linear equations inF andB, derived by introducing
some explicit smoothness priors onF andB into equation
(1). More information on the foreground reconstruction as
well as some compositing results can be found in [8].

Figure 5 shows the mattes extracted using our technique
on two challenging images used in [15] and compares our
results to several other recent algorithms. It can be seen that
our results on these examples are comparable in quality to
those of [15], even though we use a far simpler algorithm.
Global Poisson matting cannot extract a good matte from
sparse “scribbles” although its performance with a trimap
is quite good. The random walk matting algorithm [6] also
minimizes a Laplacian but uses an affinity function with a
global scaling parameter and hence has a particular diffi-
culty with the peacock image.

To obtain a more quantitative comparison between the al-
gorithms, we performed an experiment with synthetic com-
posites for which we have the ground truth alpha matte. We
randomly extracted 2000 subimages from the image shown
in figure 6(h). We used each subimage as a background
and composited over it a uniform foreground image using
two different alpha mattes: the first matte is a the computer
simulated smoke most of which is partially transparent; the
other matte is a part of a circle, mostly opaque with a feath-
ered boundary. The mattes are shown in figure 6(c). Conse-
quently, we obtained 4000 composite images, two of which
are shown in figure 6(a).) On this set of images we com-
pared the performance of four matting algorithms — Wang

and Cohen, global Poisson matting, random walk matting,
and our own (using 3×3 windows with no pyramid). All
algorithms were provided a trimap as input. Examples of
the trimaps and the results produced by the different meth-
ods are shown in figure 6(a,d–g)). For each algorithm, we
measured the summed absolute error between the extracted
matte and the ground truth. Figures 6(i,j) plot the average
error of the four algorithms as a function of the smooth-
ness of the background (specifically we measured the aver-
age gradient strength, binned into 10 bins). The errors in
the smoke matte are plotted in figure 6(i), while errors in
the circle matte are plotted in figure 6(j). When the back-
ground is smooth, all algorithms perform well with both
mattes. When the background contains strong gradients,
global Poisson matting performs poorly (recall that it as-
sumes that background and foreground gradients are negli-
gible). Of the remaining algorithms, our algorithm consis-
tently produced the most accurate results.

Figure 7 shows an example (from [15]), where Wang and
Cohen’s method fails to extract a good matte from scrib-
bles due to color ambiguity between the foreground and the
background. The same method, however, is able to pro-
duce an acceptable matte when supplied with a trimap. Our
method produces a cleaner, but also not perfect matte from
the same set of scribbles, but adding a small number of ad-
ditional scribbles results in a better matte.

Figure 8 shows another example (a closeup of the Koala
image from [14]), where there’s an ambiguity between fore-
ground and background colors. In this case the matte pro-
duced by our method is clearly better than the one produced
by the Wang-Cohen method. To better understand why this
is the case, we show an RGB histogram of representative
pixels from theF andB scribbles. Some pixels in the back-
ground fit the foreground color model much better then the
background one (one such pixel is marked red in 8(b) and
indicated by an arrow in 8(d)). As a result such pixels are
classified as foreground with a high degree of certainty in
the first stage. Once this error has been made it only re-
inforces further erroneous decisions in the vicinity of that
pixel, resulting in a white clump in the alpha matte.

Since our method does not make use of global color
models forF andB it can handle ambiguous situations such
as that in Figure 8. However, there are also cases where our
method fails to produce an accurate matte for the very same
reason. Figure 9 shows an actress in front of a background
with two colors. Even though the blackB scribbles cover
both colors the generated matte includes parts of the back-
ground (between the hair and the shoulder on the left). In
such cases, the user would have to add anotherB scribble in
that area.

6. Discussion
Matting and compositing are tasks of central importance

in image and video editing and pose a significant challenge
for computer vision. While this process by definition re-



(a) Peacock scribbles (b) Poisson from scribbles (c) Wang-Cohen (d) Our result

(e) Peacock trimap (f) Poisson from trimap (g) Bayesian (h) Random walk

(i) Fire scribbles (j) Poisson from scribbles (k) Wang-Cohen (l) Our result

(m) Fire trimap (n) Poisson from trimap (o) Bayesian (p) Random walk
Figure 5. A comparison of alpha mattes extracted by different algorithms. Images (a,c,e,g,i,k,m,o) are taken from [15]. The remaining
images were generated by our own implementation of the respective methods.

(a) Composite (b) Trimap (c) Ground truth (d) Wang-Cohen (e) Poisson (f) Random walk (g) Our result
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(h) Background source image (i) Errors (smoke matte) (j) Errors (circle matte)
Figure 6. A quantitative comparison using two ground truth mattes. The errors in (i) and (j) are plotted as a function of average gradient
strength of the background, binned into 10 bins. To produce these results we used our own implementation of the respective methods,
using the parameter values specified in the original papers.

quires user interaction, the performance of most existing al-
gorithms deteriorates rapidly as the amount of user input
decreases. In this paper, we have introduced a cost function
based on the assumption that foreground and background

colors vary smoothly and showed how to analytically elim-
inate the foreground and background colors to obtain a
quadratic cost function in alpha. The resulting cost func-
tion is similar to cost functions obtained in spectral meth-



(a) (b) (c) (d)
Figure 7. An example (from [15]) with color ambiguity between
foreground and background. (a) scribbles and matte by [15]; (b)
[15] results using a trimap; (c) our result with scribbles similar to
those in (a); (d) our results with a few additional scribbles.

(a) Scribbles (b) Wang-Cohen (c) Our result
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(d) RGB histogram ofF (red) andB (blue) pixels.
Figure 8. An example with ambiguity betweenF andB.

Figure 9. Failure due to lack of a color model.

ods to image segmentation but with a novel affinity function
that is derived from the formulation of the matting problem.
The global minimum of our cost can be found efficiently by
solving a sparse set of linear equations. Our experiments on
real and synthetic images show that our algorithm clearly
outperforms other algorithms that use quadratic cost func-
tions which are not derived from the matting equations. Our
experiments also demonstrate that our results are competi-
tive with those obtained by much more complicated, non-
linear, cost functions. However, compared to previous non-
linear approaches, we can obtain solutions in a few seconds,

and we can analytically prove properties of our solution and
provide guidance to the user by analyzing the eigenvectors
of our operator.

While our approach assumes smoothness in foreground
and background colors, it does not assume a global color
distribution for each segment. Our experiments have
demonstrated that our local smoothness assumption often
holds for natural images. Nevertheless, it would be interest-
ing to extend our formulation to include additional assump-
tions on the two segments (e.g., global models, local texture
models, etc.). The goal is to incorporate more sophisticated
models of foreground and background but still obtain high
quality results using simple numerical linear algebra.
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