
Steps to set up Dev-Environment and docker image:
(This guide uses parts of the setup guide from CS1660 and CS0300. Feel
free to check out their guide for additional debugging tips during the
dev-environment setup process as well. Big thanks to Professor DeMarinis
for his help.)

Why dev-environment?​
Last year, every student was allowed to do local development on their native systems,
but this ended up causing setup problems for each assignment for the entire year. As
such, we decided to try using a dev-environment this year with linux. This way, bugs
with setup will hopefully be avoidable or at least standardized between different
operating systems. An additional benefit of this is that once you set up your
dev-environment, Go, Git, and SQLite should automatically be installed in your
dev-environment.

Download Docker

Download and install Docker Desktop, located here. On Linux machines,
follow the instructions here.

Already have docker installed? If you already have Docker installed, we
recommend updating to the latest version by reinstalling it from Docker's
website. Old Docker can sometimes cause issues.

Note: if docker asks for privileged access, say yes.

Mac users: We do NOT recommend installing Docker with homebrew. This
may install a less-than-latest Docker version, which may cause problems.

Windows Only: Install WSL

https://hackmd.io/@cs1660/container-setup
https://www.docker.com/products/docker-desktop/
https://docs.docker.com/engine/install/ubuntu/

To run the following steps in this setup, you will need to set up Windows
Subsystem for Linux (WSL). WSL should already be enabled after you
install Docker, but you may still need to install a Linux distribution. This will
run in an actual Linux VM, and you will run your Docker container within
that VM (turtles all the way down for you!).

1.​ Do I have a Linux distribution (Linux distro) installed?
➢​Run wsl -l -v in the Command Prompt or Powershell. If there is

only “Docker Desktop” and “Docker Desktop Data”, you do not
have a Linux distribution installed. Proceed to step 2.

➢​Otherwise, you have a Linux distro installed. Proceed to step 3.

2.​ Install a Linux Distribution.
➢​Run wsl --set-default-version 2 to ensure Ubuntu will be

installed under WSL 2.
➢​Install “Ubuntu 22.04” from Microsoft Store.
➢​Click “Open” after Ubuntu is downloaded. A terminal will open

and guide you through the installation process.

3.​ Ensure your Linux Distribution runs on WSL 2.
➢​ From the output of wsl -l -v, find out if your Linux distro is using

WSL 1 or WSL 2. If it’s WSL1:
○​ Run wsl --set-version <distro name> 2 to update your

distro to use WSL 2.
4.​ Set your default Linux distro

➢​Run wsl --setdefault <distro-name> to configure your default
Linux distro. <distro-name> should be “Ubuntu-22.04” if you
installed using step 2.

Enter wsl in your Command Prompt or Powershell, and you’ll enter into
your WSL! For the rest of the setup, run commands within your WSL Linux
environment, unless otherwise specified.

You will also need to connect Docker with WSL. To do so, open your
Docker Desktop’s settings (on its top right corner), click “Resources”, “WSL

integration”, then enable integration with your Linux distro. Then, click
“Apply and Restart”.

Verify Docker Installation:

Verify Docker is installed by executing the following:
$ docker --version
Once you execute the above command, you should see the Docker version
number, for example:

$ docker --version
Docker version 24.0.7, build afdd53b

After installing Docker, a Docker process (the Docker daemon) will run in
the background. Run the following command to verify:

$ docker info

If you see the following error:

ERROR: Cannot connect to the Docker daemon at
unix:///var/run/docker.sock. Is the docker daemon running?

It means Docker hasn’t started running yet. On Windows or macOS, ensure
your Docker Desktop is running. On Linux, try the command sudo systemctl
docker restart in a terminal.

Super important instructions for mac users:

We have noticed that some MacOS users may experience issues with files
not updating when you save them under some combinations of Docker

settings: follow these instructions to check your Docker installation and
make sure it's set correctly.

 Do not skip this step or you may encounter problems later!

At this point, you should have docker downloaded
and ready for use!

To set up your environment, do the following:

1.​ Open a terminal and enter the directory on your computer where you
want to do your coursework.

a.​ Clone the dev-environment from this GitHub repository:
https://github.com/CSCI-1270-Staff/dev-environment

2.​ Use terminal to navigate into the dev-environment repo you just

cloned and run the command:
./run-container setup

Note: If you are on Windows, you will need to run this in WSL

3.​ Then, start the container by running in the dev-environment folder:
./run-container

➢​In the future, just repeat steps 4 and 5 in order to resume your
development..

Note: If you are on Windows, you will need to run this in WSL

4.​ Attach VSCode to this container and you should be able to develop
freely!
➢​ Detailed VSCode Steps from the CS300 setup guide:

i.​ Download and Install VS Code on your computer (not the course
container) normally

https://hackmd.io/@cs1660/container-setup#Filesystem-Performance-on-Macs
https://github.com/CSCI-1270-Staff/dev-environment
https://code.visualstudio.com/
https://cs.brown.edu/courses/csci0300/2024/assign/labs/lab0.html

ii.​ Navigate to the extensions tab by clicking this icon on the left side

of the screen:
iii.​ Search for and install the “Docker” and “Dev Containers” VS Code

extensions via the extensions tab. Also install “WSL” if you are on
Windows.

1.​ (Recommended) Also install the Go extension by the Go
Team on Google. This will give you intellisense for your
local development.

iv.​ Make sure your course container is running (either by connecting to
it, or checking the docker desktop app).

v.​ Click the green button (can be a different color depending on the
theme) in the bottom left of VS Code, then click “Attach to running
container” and select your cs1270 course container:

vi.​ You can now open any folder you want to edit, and can get a

terminal from your course container by clicking View > Terminal.

Congratulations! You should now be able to run a shell, as well
as write and run your programs in the dev-environment!

Verify successful dev-environment setup:

To verify that your setup is working, check that your Go version is 1.23.0.
You can check your Go version by running the command: ‘go version’.

You can also try creating some sample files in your dev-environment home
directory and checking that the files still persist after you exit your
dev-environment.
(Note: the home directory is the only directory that is mounted on a volume, and thus, it
is the only directory that persists outside of the dev-environment.)

To familiarize yourself with using the dev-environment, try closing and
re-opening the dev-environment.
➢​When opening the dev-environment, you can run the ./run-container

command as shown in step 3 of the setup. Make sure that you first
open the Docker Desktop application!

○​ (Note: windows users – make sure to run the command command in wsl.)
➢​To close the dev-environment, you can keep running exit in the

terminal you used to enter the dev-environment.

Next Steps:
Move to . Setup Github Guide - 2024
(Note: This will be available after the first assignment is released!)

https://docs.google.com/document/d/1qG1GvBQSmi-oci9GCmANx4BPHalGSIyYzFDT_7EAdGc/edit?usp=sharing

