
Guide to Golang 
This is a quick whirlwind tour of the Go programming language! Please feel 
free to use this as reference for your assignments. We highly recommend 
starting with A Tour of Go to get through the basics quickly and interactively; 
however, this guide will seek to be as comprehensive as possible. For other 
resources to learn Go, check out: 

●​ Go by Example 

 

Setup 
To get started with Go, first ensure that you have the dev-environment 
properly installed by running go version in the terminal in your 
dev-environment. You should see the version of Go 1.23.0. 

To set up a project, navigate to your folder and run go mod init <mod_name>. 
Your GitHub setup generally determines the module name. If your GitHub 
username is jswaggin and your repository name is dinodb, you should run go 
mod init github.com/jswaggin/dinodb. This creates a Go module, a virtual 
environment complete with a package system. Most Go projects should be in 
a Go module. 

You can import external packages into your module for use in your code. 
Running go get <pkg> will add the package to your go.mod file and create a 
checksum file, go.sum. Then the package will then be accessible to your code. 
Try it out on github.com/couchbase/vellum! 

Some useful commands: 

●​ go mod tidy cleans up your packages and downloads newly added 
packages. 

●​ go clean -modcache removes cached packages. 

 

https://tour.golang.org/welcome/1
https://gobyexample.com/


Building and Running 
Now that you've installed and initialized a Go project, it's time to learn how to 
run it! 

●​ go build <dir> will build a main package into a runnable executable. 
●​ go run <file.go> will run a particular main package. 
●​ go install <dir> will build a main package and link it to your $PATH, so it 

is callable from your entire machine. 

We'll explain what a main package is in the next section. In this class, building, 
and running are handled by our Makefile. We typically build the package into 
an executable to avoid creating too many binaries in your $PATH. 

 

Project Structure 
The basic structure of every Go project is about the same. Your root directory 
will be your go.mod file alongside any other configuration files or build scripts, 
like a Makefile or README. There will be two or three top-level directories: cmd 
and pkg, and potentially internal. 

cmd is where your project's primary entrypoint(s) will live, separated into 
subfolders containing a main package. Each main package is an entrypoint to 
your application and can be compiled into an executable. Let's say you had a 
file: cmd/db/main.go - running go build ./cmd/db would create an executable 
./db that would run the code inside the associated main.go file. Similarly, go 
run ./cmd/db/main.go would run the package. · 

pkg is where your project's packages live. A package is a collection of related 
Go files, typically implementing a single piece of logic. To use a package in 
your binaries, you have to import them using the module name you defined 
above (more on this later). Packages are self-contained, and everything 
capitalized will be exported from the package (e.g. func Sample() is exported, 
func secret() is not). The main package is specially designed to be compiled 
into a binary. You can have multiple main packages, each in a subfolder in the 
cmd directory (detailed above). 



internal is where private packages live; the compiler guarantees privacy, and 
code here can't be imported outside the module. In this course, we don't use 
the internal folder. 

 

Hello, World! 
The following is a classic "Hello World" program: 

package main​
​
import "fmt"​
​
func main() {​
​ fmt.Println("Hello, world!")​
} 

 

The first line of every Go file must be the package it belongs in; in this case, 
main. Next are the packages that are imported using the import keyword. You 
can (and should) import multiple packages, both from the standard library 
and from external sources, using the following syntax: 

import (​
    "fmt"​
    "os"​
    ​
    db "github.com/jcarberry/db/pkg"​
) 

 

You will have to import packages from your own module into other parts of 
your module. However, all code in a module is accessible to all other files in 
that module, even unexported values. 

 

Printing 
The fmt package is the main package for printing content out to the terminal: 



fmt.Println("Three, Two, One")​
fmt.Printf("%d, %d, %d\n", 3, 2, 1) 

 

 

Types 
Go's basic types are: 

bool​
string​
int  int8  int16  int32  int64​
uint uint8 uint16 uint32 uint64 uintptr​
byte // alias for uint8​
rune // alias for int32, represents a Unicode code point​
float32 float64​
complex64 complex128 

 

and their pointer variants, which are prefixed with a *. Each type has a zero 
value, which is 0 for numeric types, false for boolean types, and "" for strings. 

You can convert between types using Type(v). However, be aware of how data 
representation may affect the underlying data. 

 

Variables 
Variables can be declared using the var keyword or the := operator: 

var x int​
x = 10​
var y = 11  // Types are inferred.​
z := 12     // Types are inferred.​
a, b := 13, 14 // Can initialize two at a time! 

 

Note that the := operator is not available outside of functions. 



There is also a const keyword that can be used to declare constants outside of 
a function. By convention, constants should be named using 
SCREAMING_SNAKE_CASE. 

 

Functions 
Functions can be declared like so: 

func add(x int, y int) int {​
    return x + y​
} 

 

Use the keyword func, give the function a name, and type each parameter and 
output. Functions can have multiple outputs and named outputs: 

func split(sum int) (x, y int) {​
​ x = sum * 4 / 9​
​ y = sum - x​
​ return​
} 

 

Calling functions is rather straightforward as well: 

fmt.Println(add(10, 11)) // Prints 21 

 

You can also define functions anonymously and inline: 

isEven := func(x int) bool { return x % 2 == 0 } 

 

 

Loops 
Go loops are declared using the for keyword. There are two main ways to 
write a for loop, traditionally and using the range keyword: 



for i := 0; i < 10; i++ {​
    fmt.Println(i)​
}​
​
primes := [6]int{2, 3, 5, 7, 11, 13}​
for idx, val := range primes {​
    fmt.Println(idx, val)​
} 

 

While loops are written as a for loop with no condition: 

for {​
    fmt.Println("ever")​
} 

 

 

Control Flow 
if statements are written as follows: 

x := 10​
if x < 8 {​
    return 1​
} else if x > 10 {​
    return 2​
} else {​
    return 3​
} 

 

You can declare variables to be used in the if statement, but variables 
declared like this will be scoped to the if block, and be inaccessible outside of 
it: 

if v := f(); v > 10 {​
    return true​
}​
fmt.Println(v) // will error 

To check a number of cases, use the switch statement: 

 



switch v {​
case 10:​
    return false​
case 12:​
    return true​
default:​
    return false​
} 

 

To have a function be invoked only when the calling function returns, use the 
defer keyword: 

func sum() {​
    defer fmt.Println("Yoohoo")​
    fmt.Println("Yahoo")​
    // Prints "Yahoo" then "Yoohoo."​
} 

 

 

Pointers 
Go has pointers that hold memory addresses. If you have never worked with 
pointers before, we recommend reading up about C pointers to get an idea of 
how they work (Go pointers are similar to C pointers, just without pointer 
arithmetic). The zero value of a pointer is nil. Define and dereference a 
pointer like so: 

x := 10      // x holds 10​
ptr := &x    // ptr holds a reference to x​
val := *ptr    // val holds the value of x 

 

You'll often see constructors that create pointers: 

func NewDog() *Dog {​
    return &Dog{paws: 4, rating: 10}​
} 

 

 

https://www.freecodecamp.org/news/pointers-in-c-are-not-as-difficult-as-you-think/


Arrays, Slices, and Maps 
Arrays are fixed-size composite data types. The type [n]T is an array of n values 
of type T. Declare an array, filled with its zero value or initialized yourself, like 
so: 

var names [2]string​
primes := [6]int{2, 3, 5, 7, 11, 13} 

 

Slices are dynamically-sized views of an array; they are much more commonly 
used than arrays. The type []T is a slice of values of type T. While there are 
many ways to define a slice, the most useful one uses the make function, while 
using the append function to add more elements to the slice: 

names := make([]string, 0)​
names = append(names, "sparky") 

 

Use the len function to find the lengths of slices (and many other datatypes). 

names := make([]string, 8)​
length := len(names) // 8 

 

Maps are key-value stores like Python dictionaries or Javascript objects. 
Declare and use a map like so: 

m = make(map[string]int)​
m["ten"] = 10​
fmt.Println(m["ten"])​
​
ten := m["ten"]​
fmt.Println(ten)​
​
delete(m, "ten")​
fmt.Println(m["ten"]) // errors​
​
ten_check, ok := m["ten"]​
fmt.Println(ok) // false​
fmt.Println(ten_check) // 0 

 

 



Structs 
A struct is a collection of fields: 

struct Dog {​
    name string​
    legs int​
} 

To initialize and print a struct, see the following example: 

sparky := Dog{name: "sparky", legs: 4}​
fmt.Printf("%+v \n", sparky) 

 

You can create pointers to structs and access their fields in the exact same 
way (automatic dereferencing): 

sparky := Dog{name: "sparky", legs: 4}​
ptr := &sparky​
fmt.Println(ptr.name) 

You can define methods on structs (functions with a struct as a receiver) like 
so: 

func (d Dog) bark() {​
    fmt.Println("Bark")​
}​
​
sparky := Dog{name: "sparky", legs: 4}​
sparky.bark() // prints "Bark" 

Only pointer methods can mutate a struct: 

// Won't do anything​
func (d Dog) growLeg() {​
    d.legs += 1​
}​
​
// Euruka!​
func (d *Dog) growLeg() {​
    d.legs += 1​
} 

 



Interfaces 
An interface is a set of method signatures. There is no implements keyword; any 
struct with a method for every method signature automatically implements 
the interface. 

type Animal interface {​
    walk()​
    name() string​
} 

 

The empty interface interface{} is implemented by every type, and is useful for 
when a type is unknown. We can cast from an interface{} type to another type 
(unsafely) using the i.(type) syntax: 

anyMap := make(map[string]interface{}) // Can put anything in this map​
anyMap["one"] = 1​
anyMap["two"] = "two"​
anyMap["three"] = Number{value: 3}​
​
one := anyMap["one"].(int)​
one := anyMap["one"].(string) // This will panic! 

 

One thing to note about interfaces is that an interface can be implemented 
by either a struct or a pointer to that struct; as a result, you should rarely use a 
pointer to an interface in a function header, as it can cause some confusion: 

func Wrong(i *SomeInterface) {} // This will not work as expected, even if your struct has 

pointer receiver methods 

 

 

 

https://stackoverflow.com/questions/44370277/type-is-pointer-to-interface-not-interface-confusion


Errors 
The error type is used to express errors. It is often returned by functions to 
signal whether or not the function ran as expected. The following is a very 
common pattern in Go: 

func mightFail(input int) (int, error) {​
    if input == 0 {​
        return -1, errors.New("Can't use 0") // Insert Error ​
    } else {​
        return 10 / input​
    }​
}​
​
func main() {​
    result, err := mightFail(0)​
    if err != nil {​
        return err​
    }​
    fmt.Println(result)​
} 

 

The errors package is useful for creating errors. 

 

Concurrency 
This section will be populated later in the course. Important topics to review 
include: 

●​ Goroutines 
●​ Channels 
●​ sync 

 

 



Testing and Benchmarking 
Unit tests in Go are written in files that end in _test.go. Typically, unit tests for a 
given package live in the same folder as the package itself. Unit tests are 
simply functions that begin with Test and take one parameter of type 
*testing.T. You can run all of the tests for a given package using go test [-v]. The 
following is an example test: 

func TestAdd(t *testing.T) {​
    a, b := 10, 11​
    if a + b != 21 {​
        t.Error("Addition is broken")​
    }​
} 

 

Benchmarks in Go are the same as tests, except that they must be prefixed 
with Benchmark and take one parameter of type *testing.B. To run benchmarks, 
run go test -bench=.. Benchmark code must be run multiple times; be sure to 
wrap your benchmarked code in a for loop that runs at most b.N times. To 
have control over the benchmarking timer, for instance, to allow for setup or 
teardown, use b.ResetTimer, b.StopTimer, and b.StartTimer. To initiate cleanup, 
use b.CleanUp. 

To check your test's code coverage, run go test -coverprofile=.... In general, strive 
to cover most of your code with tests, about 80%. Note that high test 
coverage does not necessarily mean good testing, and good testing does not 
always result in high test coverage; given that this class also uses system 
testing, it may be that the majority of your testing infrastructure lies there. 
That is perfectly fine. What's important is that you are confident that your 
software works as intended. 

 

Style & Other Tips 
●​ You might notice that Go doesn't require semicolons; it is considered 

poor style to include them unless when necessary. 



●​ The interface{} type is the "Any" type in Go. All other types implement it. 
To cast an interface{} variable to another type, use the dot syntax. e.g. 
x.(int) casts interface{} variable x to an int. 

●​ Typically, you want to access struct attributes using getters and setters; 
avoid accessing them directly with the dot operator. 

●​ To return an error, use the errors package: errors.New("this is an error"). Our 
autograder does not care what error string you write, just that an error 
is thrown when expected. 

●​ To cast any value to a string, use fmt.Sprintf("%v\n", x). This code returns a 
string version of x. 

 


	Guide to Golang 
	Setup 
	Building and Running 
	Project Structure 
	Hello, World! 
	Printing 
	Types 
	Variables 
	Functions 
	Loops 
	Control Flow 
	Pointers 
	Arrays, Slices, and Maps 
	Structs 
	Interfaces 
	 
	Errors 
	Concurrency 
	 
	Testing and Benchmarking 
	Style & Other Tips 

