We first review the key points about regular languages. A language \(L \) is regular if \(L = L(M) \) for a DFA \(M \). Because any NFA \(N \) can be converted to an equivalent DFA, it follows that for any NFA \(N \), \(L(N) \) is regular. We also have a closure theorem, stating that if \(A \) and \(B \) are regular languages, then so are the languages \(A \cup B \), \(A \circ B \), and \(A^* \).

Topics Covered

1. Regular Expressions
2. Languages of Regexes
3. DFA-to-Regex Conversion

1 Regular Expressions

Consider a few small examples of regular languages: \(\{a\} \) for \(a \in \Sigma \), \(\{\epsilon\} \), and \(\emptyset \). We can clearly construct DFAs recognizing these languages, which implies that these languages are regular. Now consider applying several regular operations to the language \(\{1\} \), which we abbreviate as \(1 \). For example, \((1 \cup 0)^*111(1 \cup 0)^*\) is regular by the closure of regular languages under union, concatenation, and Kleene star. Note that concatenation is implied in expressions like \(111 = 1 \circ 1 \circ 1 \). This is an example of a regular expression, which we define inductively.

- A **regular expression** (**regex**) of size 1 over \(\Sigma \) is one of:
 1. \(a \), where \(a \in \Sigma \)
 2. \(\epsilon \), the empty string
 3. \(\emptyset \), the empty set

- A **regular expression** of size \(n > 1 \) is one of:
 4. \(R_1 \cup R_2 \), where \(R_1 \) and \(R_2 \) are regexes of size \(n_1 \) and \(n_2 \) such that \(n = n_1 + n_2 \)
 5. \(R_1 \circ R_2 \), where \(R_1 \) and \(R_2 \) are regexes of size \(n_1 \) and \(n_2 \) such that \(n = n_1 + n_2 \)
 6. \(R_1^* \), where \(R_1 \) is a regex of size \(n - 1 \)
In our example, \(R = (1 \cup 0)^*111(1 \cup 0)^* \) can be written as \(R = R_1 \circ R_2 \), where \(R_1 = (1 \cup 0)^* \) and \(R_2 = 111(1 \cup 0)^* \). Similarly, \(R_1 = R_3^* \) where \(R_3 = 1 \cup 0 \), and \(R_2 = 111 \circ R_3^* \). We can continue breaking down the regular expressions until we reach regexes of size 1.

In general, a regular expression defines a language. Two different regexes may describe the same language. For example, \(R, R \cup \emptyset \), and \(R \circ \epsilon \) all describe the same language. This is similar to the fact that different DFAs may recognize the same language.

- Let \(R \) be a regex over \(\Sigma \) and let \(a \in \Sigma \). The language of a regex \(L(R) \) is defined as follows:
 1. If \(R = a \), then \(L(R) = \{a\} \)
 2. If \(R = \epsilon \), then \(L(R) = \{\epsilon\} \)
 3. If \(R = \emptyset \), then \(L(R) = \emptyset \)
 4. If \(R = R_1 \cup R_2 \), then \(L(R) = L(R_1) \cup L(R_2) \)
 5. If \(R = R_1 \circ R_2 \), then \(L(R) = L(R_1) \circ L(R_2) \)
 6. If \(R = R_1^* \), then \(L(R) = (L(R_1))^* \)

There are a few edge cases to consider. If \(A \) is a language, then \(A \cup \{\epsilon\} \) is either \(A \) or \(\emptyset \) with the addition of the element \(\epsilon \). The language \(A \circ \{\epsilon\} \) is \(\emptyset \). The union \(A \cup \emptyset \) is \(A \), while the concatenation \(A \circ \emptyset \) is \(\emptyset \).

Order of Operations The order of operations on regular expressions is also important. The order of precedence is Kleene star, concatenation, then union. For example, we would write \(01^* \cup 10^* \cup 00 \) as \(0(1^*) \cup 1(0^*) \cup 00 \), which is equivalent to \((0(1^*)) \cup (1(0^*)) \cup (00) \), and finally, \((((0(1^*)) \cup (1(0^*)) \cup (00)) \).

2 Languages of Regexes

Nathan’s As-Good-As-Planted Question Is it a coincidence that our definition of the language of a regex looks a lot like the language of a DFA? Nope! We explain the relationship in the following theorem.

Theorem If \(R \) is a regex then \(L(R) \) is regular. That is, there is a DFA that recognizes \(L(R) \).

Proof We prove this theorem by induction. The base case is when \(R \) is a regex of size 1. Then \(R \) falls into one of three cases:
1. $R = a$ for $a \in \Sigma$. Then $L(R) = \{a\}$. Here is an NFA that recognizes $\{a\}$, which implies by the existence of an equivalent DFA that there exists a DFA that recognizes $\{a\}$:

![NFA diagram for $\{a\}$]

2. $R = \epsilon$. Then $L(R) = \{\epsilon\}$. An NFA accepting this language is as follows, implying that some DFA also accepts $\{\epsilon\}$:

![NFA diagram for $\{\epsilon\}$]

3. $R = \emptyset$. Then $L(R) = \emptyset$. An NFA accepting \emptyset is the following, and implies the existence of a DFA recognizing \emptyset:

![NFA diagram for \emptyset]

Our (strong) inductive hypothesis is that for all $0 < k < n$ and a regex of size k, there exists a DFA that recognizes $L(R)$. For the inductive step, let R be a regex of size n. There are three cases to consider:

4. $R = R_1 \cup R_2$. By the inductive hypothesis, there exist DFAs M_1 and M_2 that recognize $L(R_1)$ and $L(R_2)$, respectively. Because union is a regular operation, $L(R_1) \cup L(R_2)$, which is $L(R)$, is regular.

5. $R = R_1 \circ R_2$. By the inductive hypothesis, there exist DFAs that accept $L(R_1)$ and $L(R_2)$. Concatenation is a regular operation, so $L(R_1) \circ L(R_2)$, which is $L(R)$, is also regular.

6. $R = R_1^*$. As in the previous two cases, the inductive hypothesis implies that there exists a DFA M_1 accepting $L(R_1)$. Kleene star is a regular operation, so $(L(R_1))^*$ is regular. This is the language $L(R)$. \blacksquare

Notation There are a few notational shortcuts used to express regexes. In general, concatenation is implied, so $RR = R \circ R$. The notation R^+ denotes RR^*, and $R^k = R \circ R \circ \ldots \circ R \circ R$ (k times). An alphabet Σ is $0 \cup 1$ for binary strings, or more generally, $a_1 \cup a_2 \cup \ldots \cup a_k$ for $\Sigma = \{a_1, a_2, \ldots, a_k\}$. Finally, Σ^* represents all finite strings over the alphabet Σ.

Lecture 4: Regular Expressions
Max’s As-Good-As-Planted Question Are there languages that are not regular? This is the topic of the next lecture, but the short answer is yes. As we will see, the language \(L = \{ a^k b^k \mid k > 1 \} \) is not regular.

3 DFA-to-Regex Conversion

Kalinda’s As-Good-As-Planted Question Does every regular language have a regex? The answer is yes, and is considered in the following theorem.

Theorem Let \(L \) be a regular language. Then there is a regex \(R \) such that \(L = L(R) \).

Proof The proof of this theorem is constructive. We first consider a concrete example of a DFA, which we can convert to a regex. Suppose we have a DFA accepting binary strings over the alphabet \(\Sigma = \{0, 1\} \) such that the number of zeroes is even. One such DFA is:

\[
\begin{array}{c}
q_1 \\
1 \\
0 \\
q_2 \\
1
\end{array}
\]

Let’s convert this DFA to a regex. Our goal is to transform it into a DFA of the form:

\[
\begin{array}{c}
q_s \\
\text{regex } R \\
q_a
\end{array}
\]

Our first step is to add a new start state, \(q_s \), and a new accept state, \(q_a \). We add transitions from \(q_s \) and to \(q_a \) such that the input string is a regex:
To convert this to our final DFA, we need to reduce our machine down to two states. We’ll start by “ripping” out the state q_1, adjusting transitions between the other states to account for q_1’s transition behavior:

We can simplify the regexes by observing that taking the union of a regex R with the empty set simply yields R, as does concatenating R with the empty string:

The final step is to rip out q_2:
Thus, we have found a regex whose language consists of binary strings with an even number of zeroes: $1^* \cup 1^*0(1 \cup 01^*)^*01^*$. Along the way, we converted our original DFA into something not quite a DFA or NFA. In particular, we constructed a machine—called a generalized NFA—whose transitions are defined by regexes rather than single characters of the alphabet.

- A **generalized NFA (GNFA)** is a 5-tuple $(Q, \Sigma, \delta, q_{\text{start}}, q_{\text{accept}})$ where:
 1. Q is a set of states
 2. Σ is the input alphabet
 3. δ is defined for every pair of non-accepting states such that $\delta : (Q - q_{\text{accept}}) \times (Q - q_{\text{start}}) \rightarrow R$ where R is a regular expression over Σ
 4. $q_{\text{start}} \in Q$ is a unique start state
 5. $q_{\text{accept}} \in Q$ is a unique accept state

- An **accepting computation history (CH)** of a GNFA on input w consists of r_0, \ldots, r_m and y_1, \ldots, y_m such that:
 1. $r_0 = q_{\text{start}}$
 2. y_i is in $L(\delta(r_{i-1}, r_i))$
 3. $r_m = q_{\text{accept}}$

In our example, if we let $w = 110011$, we start at $r_0 = q_s$, read in $y_1 = 110$, transition to $r_1 = q_2$, read in $y_2 = 011$, and transition to $r_2 = q_a$. To generalize our proof, we need to consider this procedure for any regular language and its recognizing DFA.

General Proof Let M be a DFA recognizing the language L. We will construct an equivalent regex via the following steps:

1. First, convert M to a GNFA G by adding states q_{start} and q_{accept}. Add a transition with input \emptyset between all pairs of states without transitions in the DFA M. Note that the old accept states become regular states, although not indicated in the following sketch of this step. The old accept states transition to q_{accept} on input ϵ, and q_{start} transitions to the old start state on input ϵ.

2. One by one, “rip” the states of M out of G. To remove the state q_{rip} from G, construct G' such that:

(a) $Q' = Q - q_{rip}$

(b) Σ remains the same

(c) q_{accept} and q_{start} remain the same

(d) δ' is defined such that for all q_a, q_b that are different from q_{rip}, we update $\delta'(q_a, q_b) = \delta(q_a, q_b) \cup R_1 R_2^* R_3$, where $R_1 = \delta(q_a, q_{rip})$, $R_2 = \delta(q_{rip}, q_{rip})$, and $R_3 = \delta(q_{rip}, q_b)$.

3. For the final step, we output the one remaining regex, $\delta(q_{start}, q_{accept})$.

To prove correctness, we need to show that even as we rip out states, we preserve the language of the original DFA M. This proof is included in Section 1.3 of Sipser’s book.