As a review, consider the first question this course aims to answer: What is computation? It involves three main steps:

1. Receive an input: a finite string over a finite alphabet \(\Sigma \), such as \(\Sigma = \{0, 1\} \)
2. Perform some steps
3. Produce an output: accept or reject

In this lecture, we look at one model of computation, the deterministic finite automaton.

Topics Covered

1. Deterministic Finite Automata
2. Regular Languages
3. Regular Operations

1 Deterministic Finite Automata

Even/Odd Machine As an example, consider the computational process of determining whether an input string over the alphabet \(\Sigma = \{0, 1\} \) has an even or odd number of zeroes. In particular, it will accept strings with an even number of zeroes, and reject strings with an odd number of zeroes. A machine that computes this is:

The *even* state represents the state in which we’ve seen an even number of zeroes so far. Similarly, the *odd* state is the case in which we’ve seen an odd number of zeroes so far. There’s some new notation here. The arrowhead pointing at the *even* state indicates that it’s the start state, and the double circles denote an accepting state. A single circle denotes a rejecting state. This machine is an example of a DFA.
• Formally, a **deterministic finite automaton (DFA)** consists of:

1. A finite set of states \(Q \)
2. A finite alphabet \(\Sigma \)
3. A transition function \(\delta : Q \times \Sigma \rightarrow Q \)
4. A unique start state \(q_0 \in Q \)
5. A set of accepting states \(F \subseteq Q \)

In our even/odd machine, these DFA components are:

1. \(Q = \{ \text{even, odd} \} \)
2. \(\Sigma = \{ 0, 1 \} \)
3. \(\delta = \{ \text{even} \times 1 \rightarrow \text{even}, \text{even} \times 0 \rightarrow \text{odd}, \text{odd} \times 1 \rightarrow \text{odd}, \text{odd} \times 0 \rightarrow \text{even} \} \)
4. \(q_0 = \text{even} \)
5. \(F = \{ \text{even} \} \)

How does our DFA operate on specific inputs? On input the empty string, \(\epsilon \), it starts in the \(\text{even} \) state and immediately accepts. On input 010, it starts in the \(\text{even} \) state, then moves to \(\text{odd} \), then \(\text{odd} \) again, and finally \(\text{even} \). Because it ends on an accepting state, the DFA accepts. This leads us to a more formal definition of what it means to accept an input.

• A **computation history (CH)** of a DFA \(M = (Q, \Sigma, \delta, q_0, F) \) on input \(w = w_1w_2 \cdots w_n \) is a sequence of states \(r_0, r_1, \ldots, r_n \) such that:

1. \(r_0 = q_0 \)
2. For \(0 \leq i < n \), \(r_{i+1} = \delta(r_i, w_{i+1}) \)

• An **accepting CH** of \(M \) on input \(w \) is one where \(r_n \in F \).

• A DFA \(M = (Q, \Sigma, \delta, q_0, F) \) **accepts** a string \(w \) over \(\Sigma \) if its CH on input \(w \) is accepting. Else, it rejects \(w \).

2 Regular Languages

Languages are a way to denote the strings that a certain DFA or machine accepts.

• The **language** of a DFA \(M \) is \(L(M) = \{ w \mid M \text{ accepts } w \} \). We also say that \(M \text{ recognizes} \) the language \(L(M) \). Note that a language over \(\Sigma \) is any finite or infinite set of finite strings over \(\Sigma \).
Modulo Three Machine For another example of a DFA, consider the machine whose language A over $\Sigma = \{0, 1, 2\}$ is $A = \{w \mid \text{the sum of digits of } w \text{ is a multiple of three}\}$. A DFA satisfying this spec is as follows:

In this DFA, M, the states correspond to the sum of digits seen so far, modulo three. That is, q_0 corresponds to a multiple of three, q_1 corresponds to one more than a multiple of three, and q_2 corresponds to two more than a multiple of three. In this example, we can again identify the five components of a DFA:

1. $Q = \{q_0, q_1, q_2\}$
2. $\Sigma = \{0, 1, 2\}$
3. $\delta(q_i, a) = q_{i+a \mod 3}$ for $0 \leq i \leq 2$
4. q_0
5. $F = \{q_0\}$

Proof of Correctness We can prove the correctness of M by induction. Specifically, we can prove the lemma: M recognizes the language A, or $L(M) = A$. It is sufficient to prove the claim: For all $j \geq 0$, after reading j symbols of w, M is in a state q_u where $u = \Sigma_{i=1}^j w_i \mod 3$.

Proof of Claim For the base case of induction, let $j = 0$. At this point, we haven’t read anything and are still in the start state. The claim is true because after reading 0 symbols, M is in state q_0. Our inductive hypothesis is that for $j > 0$, the claim is true for $j - 1$. For the inductive step, we assume by the inductive hypothesis that after reading the first $j - 1$ symbols of w, M is in a state q_u where $u = \Sigma_{i=1}^{j-1} w_i \mod 3$. Next, read the
symbol w_j, and by the transition function of M, we get to $\delta(q_u, w_j) = q_{u+w_j} = q_v$ where $v = \sum_{i=1}^{j-1} w_i + w_j \mod 3 = \sum_{i=1}^{j} w_i \mod 3$. In conjunction with the base case, this shows by induction on j that the claim holds for all $j \geq 0$.

What kinds of languages are accepted by DFAs? We’ve seen two examples here: the even/odd language and the modulo-three language.

- A language A is **regular** if there exists a DFA M such that $A = L(M)$.

3 Regular Operations

What properties do regular languages have, aside from being recognized by DFAs? First, a few definitions.

- The **complement** of a language L over Σ is $L^C = \{ w \mid w \in \Sigma, w \notin L \}$.
- The **union** of two languages A and B is $A \cup B = \{ w \mid w \in A \text{ or } w \in B \}$.
- The **concatenation** of two languages A and B is $A \circ B = \{ w \mid w = x \circ y, x \in A, y \in B \}$.
- The **Kleene star** of a language A is $A^* = \{ w \mid w = x_1 x_2 \cdots x_n \text{ where } n \geq 0 \text{ and every } x_i \in A \}$.

These last three operations—union, concatenation, and Kleene star—are known as **regular operations** on languages. The reason for this, as we will prove, is that regular languages are closed under the regular operations.

To see examples of these operations, consider the regular language $A = \{anna\}$ over the alphabet $\Sigma = \{a, n\}$. An *anna* machine that accepts this language A is as follows:

![Diagram](image-url)
In addition, let the language $B = \{ w \mid w \text{ begins and ends with } n \}$. B is a regular language, as we can construct a recognizing DFA:

Given these regular languages A and B, we can consider what happens when we perform regular operations on them. For example, $A \cup B = \{ w \mid w = \text{anna} \text{ or } w \text{ begins and ends with } n \}$. The concatenation $A \circ B = \{ \text{anna} \circ w \mid w \text{ begins and ends with } n \}$. On the language A, the Kleene star $A^* = \{ \epsilon, \text{anna,annaanna,annaannaanna,} \ldots \}$.

Max’s Observation For this language B, $B^* = \{ \epsilon \} \cup B$.

As an aside, note that \emptyset is the empty language, and $\emptyset^* = \{ \epsilon \}$. Now that we have seen definitions and examples of complements and regular operations, we will begin to prove the closure of regular languages under these operations.

Theorem If L is regular then so is L^C.

Peter’s Proof To show that a language is regular, we can construct a DFA that recognizes the language. Take M, a DFA recognizing L, where $M = (Q, \Sigma, \delta, q_0, F)$. Let $M' = (Q, \Sigma, \delta, q_0, F' = Q \setminus F)$. We can show that M' is a DFA accepting L^C. Why does M' accept this language? If w is accepted by M, then there is a CH by M on w which ends on a state in F. When M' reads the same input w, the CH ends in exactly the same state, which is now a rejecting state in M'. The opposite case follows by the same reasoning.

In particular, if w is accepted by M, this implies that w is rejected by M', and if w is rejected by M, this implies that w is accepted by M'. Thus, M' recognizes L^C, showing that it is a regular language.
Theorem Regular languages are closed under union. This is Theorem 1.25 in Sipser’s book: If \(A \) and \(B \) are regular languages over the same alphabet, then so is \(C = A \cup B \). This can be generalized to languages over different alphabets, but we will assume the same alphabet for simplicity in the proof.

Proof Idea Let \(M_A \) be a DFA recognizing \(A \), and let \(M_B \) be a DFA recognizing \(B \). Define \(M_A = (Q_A, \Sigma, \delta_A, q_{0A}, F_A) \) and \(M_B = (Q_B, \Sigma, \delta_B, q_{0B}, F_B) \). From these, we will design a DFA \(M_C \) that runs \(M_A \) and \(M_B \) in parallel. In particular, \(M_C = (Q_C, \Sigma, \delta_C, q_{0C}, F_C) \) has the components:

1. \(Q_C = Q_A \times Q_B \)
2. \(\Sigma \) remains the same
3. \(\delta_C((q_A, q_B), a) = (\delta_A(q_A, a), \delta_B(q_B, b)) \)
4. \(q_{0C} = (q_{0A}, q_{0B}) \)
5. \(F_C = \{(q_A, q_B) \mid q_A \in F_A \text{ or } q_B \in F_B \} \)

For an example of a union DFA, we can consider the DFA that accepts the union of the even/odd and modulo-three languages seen earlier in class. We’ll add the element 2 to the even/odd alphabet to maintain consistency.