In our notation of Turing machines, we write “x = ⟨M⟩” to indicate that we’re interpreting x as the description of a TM M. If x is not a valid encoding of a TM, we by default interpret it as the TM M₀ that always rejects.

Last time, we saw that \(A_{DFA} = \{⟨M, w⟩ | M \text{ is a DFA and } M \text{ accepts } w\} \) is decidable. On the other hand, \(A_{TM} = \{⟨M, w⟩ | M \text{ is a TM and } M \text{ accepts } w\} \) is Turing-recognizable but undecidable. What about \(A_{TM}^C \)?

Topics Covered

1. Decidability Under Complements
2. TM Reductions
3. Rice’s Theorem

1 Decidability Under Complements

Theorem If a language \(L \) is decidable, then so is \(L^C \).

Proof Suppose \(L \) is decidable; let \(D \) be its decider. Consider the following TM \(D' \):

\[
D', \text{ on input } x:
\]

1. Run \(D \) on \(x \).

2. Accept if \(D \) rejects. Otherwise, reject.

We claim that \(D' \) is a decider for \(L^C \). If \(x \in L^C \), then \(x \notin L \), so \(D \) will reject \(x \) and \(D' \) will accept. If \(x \notin L^C \), then \(x \in L \), so \(D \) will accept \(x \) and \(D' \) will reject. Because \(D \) halts, \(D' \) also halts. Thus, \(D \) is a decider for \(L^C \). ■
Corollary If \(L \) is undecidable, so is \(L^C \).

In particular, \(A_{TM}^C \) is undecidable because \(A_{TM} \) is undecidable. Is \(A_{TM}^C \) Turing-recognizable? Our intuition (thanks to Tracy) might say that given a TM recognizing \(L \), unless it’s a decider, it isn’t clear how we can construct a machine to recognize \(L^C \). This brings us to another theorem.

Theorem If \(L \) and \(L^C \) are Turing-recognizable, then \(L \) is decidable.

Proof Suppose \(M \) recognizes \(L \) and \(M' \) recognizes \(L^C \). Consider the TM \(D \) that operates as follows:

\[
D, \text{ on input } w:
\]

1. Run the following in parallel:

 (a) Run \(M \) on \(w \).

 (b) Run \(M' \) on \(w \).

 (c) If \(M \) accepts, accept. If \(M' \) accepts, reject.

The TM \(D \) is a decider for \(L \). If \(w \in L \), then \(M \) will accept and \(D \) will accept. If \(w \in L^C \), then \(M' \) will accept and \(D \) will reject. Any \(w \) is either in \(L \) or \(L^C \), and will thus be accepted by either \(M \) or \(M' \). Therefore \(D \) halts on any \(w \), and decides \(L \). \(\blacksquare \)

Corollary If \(L \) is recognizable and undecidable, then \(L^C \) is not recognizable. This corollary implies that \(A_{TM}^C \) is not Turing-recognizable.

2 TM Reductions

Consider the language \(HALT_{TM} = \{(M, w) \mid M \text{ is a TM that halts on input } w\} \). To prove that \(HALT_{TM} \) is undecidable, we can reduce \(A_{TM} \) to \(HALT_{TM} \). This means that if we could decide \(HALT_{TM} \), then we could decide \(A_{TM} \). In particular, we reduce something we know is undecidable to something we wish to show is undecidable. The outline for our reduction is to first suppose that \(HALT_{TM} \) were decidable. Then, we use the decider \(D \) for \(HALT_{TM} \) to construct a decider \(D' \) for \(A_{TM} \). Since \(A_{TM} \) is not decidable, this yields a contradiction, showing that \(HALT_{TM} \) is undecidable.
Proof that $HALT_{TM}$ is Undecidable Suppose $HALT_{TM}$ were decidable and let D be its decider. Now construct a decider D' for A_{TM}:

D', on input $\langle M, w \rangle$:

1. Run D on input $\langle M, w \rangle$.
2. If D accepts, then run M on w. Accept if M accepts and reject if M rejects.
3. Otherwise, if D does not accept, then reject.

In analyzing this construction, we need to show that if D decides $HALT_{TM}$, then D' decides A_{TM}. Suppose $\langle M, w \rangle \in A_{TM}$. Then M halts and accepts w. D' will send its input to D, which will say that it halts. Then, running M on w will accept, and D' will accept. Alternatively, suppose $\langle M, w \rangle \notin A_{TM}$. Either M rejects or loops forever on input w. First, consider the case when M rejects on input w. Then D will say that M halts on w, so D' will run M on w. This rejects, so D' rejects. In the second case, M loops on w. Then D rejects because M does not halt on w, and D' will reject.

Thus, D' accepts $\langle M, w \rangle \in A_{TM}$ and rejects $\langle M, w \rangle \notin A_{TM}$, so D' decides A_{TM}. However, since we know that A_{TM} is undecidable, D' cannot exist. Hence, our assumption was incorrect and $HALT_{TM}$ is undecidable. ■

The language $E_{TM} = \{ \langle M \rangle | M \text{ does not accept anything; i.e. } L(M) = \emptyset \}$ is also undecidable.

Proof that E_{TM} is Undecidable Suppose we had a decider D for E_{TM}. Then consider D', a decider for A_{TM}:

D', on input $\langle M, w \rangle$:

1. Transform the input into another TM, $\langle X \rangle$. X has instructions, “On input x, run M on w, and accept if M accepts.”
2. Run D on $\langle X \rangle$. Reject if D accepts. Accept if D rejects.

If $\langle M, w \rangle \in A_{TM}$, X will accept every input so $\langle X \rangle \notin E_{TM}$. D will reject and D' will accept. If $\langle M, w \rangle \notin A_{TM}$, X will reject on every input, so $\langle X \rangle \in E_{TM}$. In this case, D will accept and D' will reject. Thus, D' decides A_{TM}, which we know is undecidable. This implies
that E_{TM} must be undecidable.

Another undecidable language is $\text{CONTAINSEMPTY}_{TM} = \{ \langle M \rangle \mid \varepsilon \in L(M) \}$. We will shorten this to CE_{TM}.

Proof that CE_{TM} is Undecidable Suppose CE_{TM} were decidable, and let D be its decider. Then construct a decider D' for A_{TM} as follows:

\[
D', \text{ on input } \langle M, w \rangle: \\
1. \text{ Transform the input into another TM } \langle X \rangle. X \text{ has instructions, “On input } w', \text{ if } w' = \varepsilon, \text{ run } M \text{ on } w \text{ and accept if } M \text{ accepts. Else, reject.”} \\
2. \text{ Run } D \text{ on input } \langle X \rangle. \text{ Accept if } D \text{ accepts. Reject if } D \text{ rejects.}
\]

If $\langle M, w \rangle \in A_{TM}$, then $\varepsilon \in L(X)$ and $\langle X \rangle \in CE_{TM}$. Then D accepts and D' accepts. If $\langle M, w \rangle \notin A_{TM}$, then $\varepsilon \notin L(X)$ and $\langle X \rangle \notin CE_{TM}$. D rejects, so D' rejects. Thus D' decides A_{TM}, which is a contradiction, so CE_{TM} must be undecidable.

3 Rice’s Theorem

Rice’s Theorem tells us that any language of the form $P = \{ \langle M \rangle \mid L(M) \text{ satisfies some nontrivial property} \}$ is undecidable. A nontrivial property is a property such that there exist machines M_{yes} and M_{no} such that $L(M_{yes})$ satisfies the property and $L(M_{no})$ does not. More formally, consider the following statement of the theorem:

Rice’s Theorem Let P be a language of TM descriptions such that P satisfies the following two conditions:

1. P is nontrivial; that is, there exists a TM whose description is in P, and there exists a TM whose description is not in P.

2. P is a property of the TM’s language. Whenever $L(M_1) = L(M_2)$, we have $\langle M_1 \rangle \in P$ if and only if $\langle M_2 \rangle \in P$.

Then P is an undecidable language.

Proof We break the proof down into two cases, based on whether or not the empty language \emptyset satisfies the property.
1. First, suppose the empty language does not satisfy the property. For example, a machine whose language is empty is not included in the languages \(\text{NonReg}_{TM} = \{M \mid L(M) \text{ is not regular}\} \) and \(\text{Infinite}_{TM} = \{M \mid L(M) \text{ contains an infinite number of strings}\} \). Note that these languages both contain the description of some TM \(M_{yes} \). For the proof, we suppose that \(P \) were decidable, and let \(D \) be its decider. Then we construct the following decider \(D' \) for \(A_{TM} \):

\[
D', \text{ on input } (M, w):
\]

1. Construct \(X \), where \(X \)'s instructions are, “On input \(x \), run \(M \) on \(w \). If \(M \) accepts, run \(M_{yes} \) on \(x \).”

2. Run \(D \) on input \((X) \). Accept if \(D \) accepts. Otherwise, reject.

If \((M, w) \in A_{TM} \), then \(L(X) = L(M_{yes}) \). This means that \((X) \in P \), so \(D \) accepts and \(D' \) accepts. If \((M, w) \notin A_{TM} \), \(L(X) = \emptyset \). Then \((X) \notin P \), so \(D \) rejects and \(D' \) rejects. Thus, \(D \) is a decider for \(A_{TM} \), which implies by contradiction that \(P \) is undecidable.

2. In the second case, suppose the empty language does satisfy the property. Then consider \(P^C = \{M \mid L(M) \text{ does not satisfy the property}\} \). Note that \(P^C \) falls under the first case, as \(\emptyset \) is in either \(P \) or \(P^C \). If \(P^C \) is undecidable, then \(P \) is also undecidable. \(\blacksquare \)

There are some languages which are undecidable, but cannot be proven so by Rice’s Theorem. One example is \(\text{EQ}_{TM} = \{(M_1, M_2) \mid L(M_1) = L(M_2)\} \). Another is the Post correspondence problem (PCP), which has to do with the existence of matches in a layout of dominoes over an alphabet \(\Sigma \).