
CSCI 1010 - Fall’25 Theory of Computation Lorenzo De Stefani

HW9
Due: n/a

Reminder: Submit your assignment on Gradescope by the due date. Submissions
must be typeset. Each page should include work for only one problem (i.e.,
make a new page/new pages for each problem). See the course syllabus for
the late policy.

While collaboration is encouraged, please remember not to take away notes
from any labs or collaboration sessions. Your work should be your own. Use
of other third-party resources is strictly forbidden.

Please monitor Ed discussion, as we will post clarifications of questions there.

Problem 1

Let ϕ be Boolean Formula in CNF, and let ALLBUT2SAT = {< ϕ > | ∃ϕ′

which includes all the clauses of ϕ except exactly two, and which is satisfiable
}. Show that ALLBUT2SAT is NP-complete.

To prove that ALLBUT2SAT is NP -Complete, we must show that it is in
NP and that it is NP -hard.

ALLBUT2SAT is in NP :

To prove that ALLBUT2SAT is inNP , we will provide an NTMN deciding
it. It follows the following algorithm on input < ϕ >:

1. Check that ϕ is in CNF.

(a) If not, reject.

(b) Else continue.

2. Nondeterministically pick a truth assignment for them Boolean variables
in ϕ

3. Evaluate ϕ at the selected assignment.

(a) If all but at most two clauses are satisfied accept.

(b) Else, reject.

CSCI 1010 - Fall’25 Due: n/a

We now prove that L(N) = ALLBUT2SAT .

L(N) ⊆ ALLBUT2SAT : Assume < ϕ >∈ L(N). This means that ϕ is
a boolean formula in CNF form and that there exists a truth assignment
that satisfies all but at most two of its clauses. This is exactly saying that
∃ϕ′ which includes all the clauses of ϕ except at exactly two and which is
satisfiable. Therefore, < ϕ >∈ ALLBUT2SAT .

ALLBUT2SAT ⊆ L(N): Assume < ϕ >∈ ALLBUT2SAT . This means
that ∃ϕ′ which includes all the clauses of ϕ except at exactly two and which is
satisfiable. This is saying that there exists a truth assignment that satisfies
all but at most two of ϕs clauses. Therefore, there is a non-deterministic
branch of N that accepts < ϕ >, so ϕ ∈ L(N).

Moreover, each branch of N takes polynomial time in the length of the input:

• Step 1 takes O(n) time

• Step 2 takes O(m) time

• Step 3 takes O(n) time

Therefore, each branch of N requires at more linear time.

ALLBUT2SAT is NP -hard:

To prove that ALLBUT2SAT is NP -Hard, we will show that there exists
f , a polynomial time reduction from ALLBUT2SAT to CNFSAT , which
is also NP -Hard. This means that if we can provide a polynomial time
algorithm to decide ALLBUT2SAT , then we can provide a polynomial time
algorithm to decide CNFSAT .

We define f : ALLBUT2SAT → CNFSAT such that

f(< ϕ >) =< ϕ ∧ y ∧ ¬y ∧ z ∧ ¬z >

where y and z are boolean variables that do not appear in ϕ.

We now need to show that < ϕ >∈ CNFSAT ⇐⇒ f(< ϕ >) ∈
ALLBUT2SAT and that f is a polynomial time reduction.

< ϕ >∈ CNFSAT ⇒ f(< ϕ >) ∈ ALLBUT2SAT : If ϕ is satisfiable, then
there is a truth assignment A, mapping each variable to a truth value, that
can make all the clauses of ϕ true at the same time. Then A∪{y 7→ T}∪{z 7→

2

CSCI 1010 - Fall’25 Due: n/a

T} is an assignment that makes all the clauses of f(< ϕ >) =< ϕ∧ y∧¬y∧
z ∧ ¬z > except ¬y and ¬z true. Therefore, f(< ϕ >) ∈ ALLBUT2SAT .

f(< ϕ >) ∈ ALLBUT2SAT ⇒< ϕ >∈ CNFSAT : Suppose all but at
most two clauses of ϕ ∧ y ∧ ¬y ∧ z ∧ ¬z are satisfiable, then we have two
cases. In addition, suppose that at least one clause that is not satisfied is
in ϕ. This means that there is a truth assignment satisfying at least three
of {y,¬y, z¬z}, which is impossible. Therefore, it must be that ϕ has a
satisfying truth assignment, so < ϕ >∈ CNFSAT .

Finally, we can show that f takes polynomial time: all f does is add four
clauses to the encoding of the boolean formula, which takes constant time.
Therefore, f is O(1), which is polynomial.

Problem 2

Let A be a language such that A ∈ NP.

1. Let B be a language such that B ∈ NP. Prove that AB = {x · y | x ∈
A and y ∈ B} ∈ NP, so that NP is closed under concatenation.

2. Prove that A∗ = {x1x2 . . . xn | n ≥ 0 and xi ∈ A} ∈ NP, so that NP is
closed under the Kleene star operation.

Solution:

For any two languages in NP, L1 and L2, let M1 and M2 be the NTMs that
decide them in polynomial time. Construct an NTM M ′ which decides L1L2

in polynomial time.

M ′ = “On input w:

1) For each partitioning of w into two substrings w = w1w2:

2) Run M1 on w1, and run M2 on w2. If both accept, accept; otherwise
continue with the next division.

3) If w is not accepted after you try all possible divisions, reject.”

M ′ accepts w iff w can be expressed as w1w2 s.t. M1 accepts w1 and M2

accepts w2. Stage 2 runs in poly time and is repeated for at most O(n)
times, so the algorithm runs in polynomial time.

NP closed under Kleene star:

3

CSCI 1010 - Fall’25 Due: n/a

Let A ∈ NP. Then there exists MA a non-deterministic polynomial-time
decider for A. To show that A∗ is in NP, we will construct a machine that
runs in nondeterministic polynomial time that decides A∗.

Non-deterministic decider: We will construct a decider M ′ for A∗ in the
following way:

If w = ϵ, M ′ accepts w.

For any k ≤ |w|, M ′ non-deterministically considers all the ways to split w
into w1, ..., wK such that w1w2...wk = w. If w1, ..., wk ∈ A, MA accepts
each w1, ..., wk then M ′ accepts w. Else it doesn’t. There is a finite number
of possible splits since w is finite and MA is a decider, so M ′ necessarily
halts with either an acceptance or a rejection if there is no acceptance.

L(M ′) = A∗ and M ′ decides A∗:

First, we show that A∗ ⊂ L(M ′). Let w ∈ A∗. Then there exist w1, ...,
wK ∈ A such that w1w2...wk = w. Thus, in one of the non-deterministic
branches, M ′ simulates MA on each wi, accepting all the strings, so M ′

accepts w.

Now, we show that A∗ ⊂ L(M ′). Let w ∈ A∗, so w ̸∈ A∗. There exist no
w1, ..., wK with w1w2...wk = w such that w1, ..., wK ∈ A. Therefore, none
of the branches of M ′ end in acceptance, so M ′ rejects w.

Runtime analysis: SinceA is in NP,MA takes non-deterministic polynomial
time O(nk). Each non-deterministic branch runs MA a finite amount of
times, so the total takes O(nk) + ... + O(nk) = O(nk) nondeterministic
polynomial runtime. Hence, the total non-deterministic execution time of
M ′ is equivalent to O(nk).

For any language A in NP, let M be the NTM that decides A in polynomial
time. Construct NTM M ′ which decides A∗ in polynomial time.

M ′ = “On input w:

1) On input w, use the choice inputs to break w into substrings w =
w1w2 . . . wk. Assuming a choice input of 1 or 0 for each of the x symbols
in w: if the choice input is 1, then break off a substring after the current
input symbol. If the choice input is 0, do not break off a substring after the

4

CSCI 1010 - Fall’25 Due: n/a

current input symbol.

2) For each substring wi: Run M on wi. Reject if it rejects.

3) Accept.”

M ′ accepts w iff w can be expressed as w1w2 . . . wk such that M accepts
each wi, which is true iff w ∈ A∗. Steps 1 and 3 clearly run in polynomial
time; step 2 loops at most n times, and each loop takes polynomial time, so
the whole thing takes polynomial time.

Problem 3

Given a graph G = (V,E), we say that subset V ′ ⊆ V is an “α-diverse
k-clique” in G if:

• |V ′| = k,

• For all pairs vi, vj ∈ V ′, (vi, vj) ∈ E (i.e., V ′ is a k-clique).

• For all pairs vi, vj ∈ V ′, vi is connected to α vertices that are not
connected to vj (and vice versa).

Let DCLIQUE = {⟨G, k, α⟩|G is a graph with an α− diverse k − clique}.

Show that DCLIQUE is NP-complete.
Solution:
First, we will show that DCLIQUE is in NP. To do so, we will construct
a verifier TM that runs in polynomial time. Let the certificate be c be a
subset S ⊂ V of vertices in G. Our algorithm will do the following:

1. On input w, check that w is an encoding ⟨⟨G, k, α⟩, S⟩, where G =
(V,E) is a graph, k is a non-negative integer, α is a non-negative
integer, and S is a subset of vertices in V . If not, reject.

2. Check that |S| = k. If not, reject.

3. For each distinct u, v ∈ S, go through the adjacency matrix E and
check that there is an edge between u and v. If there exists some u, v
that doesn’t have an edge between them, reject.

4. For each distinct u, v ∈ S, do the following subroutine:

• Let b = 0.

5

CSCI 1010 - Fall’25 Due: n/a

• Loop through each vertex z in V . If there exists an edge between
z and u but not an edge between z and v, increase b by 1.

• After looping through all the vertices in V , reject if b < α.

5. If we have not rejected until here, accept.

First, we will prove that this runs in polynomial time. The format check can
be done in polynomial time. There are at most k2 pairs u, v. For each pair,
we go through at most n2 entries of the adjacency matrix. So, steps 1-3 take
at most k2·n2 steps. In step 4, we loop through k2 pairs u, v and for each pair,
we loop through n vertices, and for each vertex, we go through at most n2

entries of the adjacency matrix. So, steps 4-5 take at most k2 ·n·n2 = k2 ·n3.
So, overall, the TM takes at most k2 ·n2 + k2 ·n3 = O(k2n3) steps, which is
polynomial. Suppose w ∈ DCLIQUE. Then, it is in the right format, and
it must be that S is an α-diverse k-clique so step 3 passes. Step 4 checks
that each u is connected to at least α vertices that v is not connected to, and
since S is an α-diverse clique, we accept in step 5, by definition. Suppose
w /∈ DCLIQUE. Then, if it is the wrong format, then we reject in either
steps 1 or 2. Then, S is a subset of k vertices. If S is not a k-clique, we
reject in step 3. Suppose, heading for a contradiction, that S is a k-clique
and we accept in step 5. Then, for each distinct u, v ∈ S, we counted b ≥ α
vertices that are connected to u but not v. This means that S is α-diverse,
so w ∈ DCLIQUE, which is a contradiction. So, we reject in step 5, as
desired.

Now, we will show that DCLIQUE is NP-hard. We will do a reduction
from CLIQUE. Let our computable function f be defined as follows:

1. On input w, check if w = ⟨G, k⟩, where G = (V,E) is a graph, and k
is a non-negative integer. If the format is invalid, output “hi”. If it’s
the correct format, output ⟨G, k, 0⟩.

It is clear that this function runs in polynomial time, since checking the
format and adding the 0 can all be done in polynomial time. Suppose
w ∈ CLIQUE. Then, w = ⟨G, k⟩, so it is in the correct format. Then,
f(w) = ⟨G, k, 0⟩. Since w ∈ CLIQUE, it must be that G has a k-clique.
This clique is also 0-diverse, since for each u, v, we have that u is always
connected to at least 0 other vertices that v is connected to. So, f(w) ∈
DCLIQUE. Suppose w /∈ CLIQUE. If it’s the wrong format, then f(w)
is “hi”, which is also in the wrong format so f(w) /∈ DCLIQUE. If it’s

6

CSCI 1010 - Fall’25 Due: n/a

in the right format, then w does not have a k-clique. Suppose, heading
for a contradiction, that f(w) ∈ DCLIQUE. This means that G has a
0-diverse k-clique. Note that any 0-diverse k-clique is a k-clique, so G has a
k-clique, which is a contradiction. So, it must be that f(w) /∈ DCLIQUE,
completing the proof.

7

	
	
	

