
CSCI 1010 - Fall’25 Theory of Computation Lorenzo De Stefani

HW8
n/a

Reminder: Submit your assignment on Gradescope by the due date. Submissions
must be typeset. Each page should include work for only one problem (i.e.,
make a new page/new pages for each problem). See the course syllabus for
the late policy.

While collaboration is encouraged, please remember not to take away notes
from any labs or collaboration sessions. Your work should be your own. Use
of other third-party resources is strictly forbidden.

Please monitor Ed discussion, as we will post clarifications of questions there.

Problem 1

A language A is said to be P -complete if A ∈ P and if ∀L ∈ P,L ≤p A.
Which one of the following statements is the most correct?

• No regular language is P -complete.

• Some regular languages are P -complete but not all of them.

• All regular languages are P -complete.

• There exists a regular language which is P -complete iff P = NP .

Choose a statement you believe to be correct and provide complete proof of
why is that the case.

Solution:

The correct statement among the options provided is some but not all regular
Languages are P-complete.

Let R be a non-trivial regular language in P . This means that there exists
x, y ∈ Σ∗ (where Σ is the alphabet) such that x ∈ R and y ̸∈ R.

Let A ∈ P . This means that there exists a polynomial time decider DA for
A. We construct a polynomial time reduction f from A to R in the following
way:

CSCI 1010 - Fall’25 n/a

Let w ∈ A. Run DA on w. If DA accepts, f(w) = x,e else f(w) = y.
f(w) ∈ R if and only if w ∈ A because DA is a decider. Moreover, since DA

runs in polynomial time, the reduction takes polynomial time. (Note: for
full credit this would need to be expanded on).

On the other hand, if R is a trivial language, then this reduction cannot take
place. There simply does not exist a map from A to R that maps preserves
membership since either all the strings are in R or no string is in R. For
example, the language that does not accept any string is regular, but it is
not possible to map a member from another language to a member in this
language. (Note: for full credit this would need to be expanded on).

Problem 2

Given a Boolean formula ϕ, we say that an assignment of its Boolean
variables is a satisfactory assignment if ϕ evaluates to TRUE using the
truth values for its variable given in the assignment.

Further, we say that two assignments of truth value to its Boolean variable
are distinct if there is at least a variable which is assigned value TRUE in
one assignment and value FALSE in the other.

LetQUADRUPLELESAT = {< ϕ > |ϕ is a Boolean formula in CNF and it
has at least four distinct satisfying assignments}.

Show that QUADRUPLESAT is NP − complete. Here is an outline of
how to do so:

1. Propose a Deterministic Verifier requiring worst case polynomial time
for QUADRUPLESAT . Given the encoding of a Boolean formula
⟨ϕ⟩ we say that its size is the number of literals in ϕ (i.e., the sum of
occurrences of variables in ϕ).

(a) Provide a description of a deterministic polynomial-time verifier
V for QUADRUPLESAT . What is the certificate c used?

(b) Prove the correctness of your verifier: Two directions:

• < ϕ >∈ QUADRUPLESAT =⇒ ∃c s.t. the verifies
accepts < ϕ > using c.

• < ϕ >/∈ QUADRUPLESAT =⇒ ∄c s.t. the verifies
accepts < ϕ > using c.

2

CSCI 1010 - Fall’25 n/a

(c) Prove that the proposed verifier required worst case polynomial
time with respect to the size of the input and of the certificate.

2. Provide a description of a nondeterministic polynomial-time decider
N for for QUADRUPLESAT .

(a) Prove the correctness of your deciderN that is L(N) = QUADRUPLESAT .

(b) Prove that your decider requires worst case non-deterministic
polynomial time with respect to the size of the input.

3. Describe a deterministic algorithm that given a string w computes
f(w) such that f(w) is the encoding of a Boolean formula ϕ′′ ∈
QUADRUPLESAT if and only if w is the encoding of a satisfiable
Boolean formula ϕ′. Given a Boolean formula you can assume that its
encoding can be produced (i.e., written) in time linear with respect to
its size.

• Argue the correctness of your algorithm, that is that it computes
f(·) s.t. w is the encoding of a satisfiable Boolean formula ⇐⇒
f(w) ∈ QUADRUPLESAT .

• Prove that your proposed algorithm runs in worst case polynomial
time with respect to the size of the input (i.e., |w|)

Here is a solution sketch.

Deterministic polynomial time verifier Let ϕ(a1, ..., an) be a Boolean
formula in CNF (if the format is incorrect, reject immediately) and four truth
assignments for a1, ..., an (if they aren’t such assignments, reject immediately.
Check that all the assignments are distinct in linear time by comparing each
variable assignment for all four truth assignments at the same time. Then,
evaluate ϕ(a1, ..., an) (can be done in linear time) at each truth assignment.
If all four yield true, accept. Else, reject.

If ϕ is in QUADRUPLESAT, then it has at least four distinct satisfying
assignmentsA1, A2, A3, A4, so the verifier will accept< ϕ, (A1, A2, A3, A4) >.
On the other hand, if it is not in QUADRUPLESAT, then it has strictly less
than four distinct satisfying assignments, so for any distinct A1, A2, A3, A4

assignments, the verifier will reject < ϕ, (A1, A2, A3, A4) >.

Moreover, the process takes polynomial time, since checking distinctness
takes O(n), and evaluating also takes O(n), for a total runtime in O(n).

3

CSCI 1010 - Fall’25 n/a

Nondeterministic polynomial time decider
Let ϕ(a1, ..., an) be a Boolean formula in CNF (if the format is incorrect,
reject immediately). Consider the following nondeterministic process: non-
deterministically select four distinct truth assignments for a1, ..., an, and
evaluate them. If they all satisfy the formula, then accept ϕ. Else, reject.

If ϕ is in QUADRUPLESAT, then it has at least four satisfying assignments.
There will be a branch of the non-deterministic process that considers this
set of four assignments and accepts ϕ.

On the other hand, if ϕ is not in QUADRUPLESAT, then there is no set of
four assignments that will satisfy it at the same time. Therefore, non of the
non-deterministic branches of the process will end in acceptance, and ϕ will
be rejected.

Therefore, this process decides whether phi is in QUADRUPLESAT or not.
Moreover, it does so in nondeterministic linear time: each branch takes
O(n) +O(n) +O(n) +O(n) ≈ O(n) time.

It remains to show that QUADRUPLESAT is NP-hard. To do so we
may reduce SAT, a known NP-hard problem to QUADRUPLESAT . Let
F be an instance of SAT, namely a Boolean formula. Then let z1 and
z2 be variables which do not appear in F. Then the Boolean formula E =
F∧(z1∨¬z1)∧(z2∨¬z2) has a truth assignment iff F has a truth assignment
(since the last clause is always true), and moreover E has at least four truth
assignments iff F has a truth assignment, since we may assign the variables z1
and z2 arbitrarily. It takes linear time to add these two clauses to the end of
the input. So F → E defines a poly-time reduction of QUADRUPLESAT
to SAT.

Problem 3

Given a graph G = (V,E), a clique of size k is a subset V ′ ⊆ V such that
(i) |V ′| = k, and (ii) each vertex in V ′ is connected to all other vertices in
V ′ by an edge in E. We say that two cliques V ′ and V ′′ are distinct if they
differ in at least one vertex

Let TRIPLE − CLIQUE = {⟨G, k⟩|G is a graph with at least three distinct k−
cliques}.

1. Show that TRIPLE − CLIQUE ∈ NP . You can either show a deterministic
verifier for TRIPLE − CLIQUE or a non-deterministic decider. You

4

CSCI 1010 - Fall’25 n/a

should provide a proof of correctness and of polynomial running time
(as outlined in Problem 2).

2. Given a graph G = (V,E), it is possible construct a string encoding
of G of size O(|E|). Argue that CLIQUE ≤p TRIPLECLIQUE

Solution:

First, we will show that TRIPLE − CLIQUE ∈ NP . To do so, consider
the following algorithmic description of an NTM N . On input w, check that
w is of the form ⟨G, k⟩, where G is a graph and k is a positive integer. If
not, reject the input. Nondeterministically pick a triple (V1, V2, V3), where
V1, V2, V3 are each a subset of k vertices of G. If V1, V2, V3 do not differ in
any vertex, reject the input. Otherwise for each Vℓ ∈ {V1, V2, V3}, check if G
contains an edge between the pair (vi, vj) for all vi, vj ∈ Vℓ such that i < j.
If this is true for all Vℓ ∈ {V1, V2, V3}, accept the input, otherwise reject.

First, we will show that w ∈ TRIPLE−CLIQUE if and only if w ∈ L(N).
Suppose w ∈ TRIPLE − CLIQUE. Then, w is of the form ⟨G, k⟩, so
it is not rejected immediately. Then, since w ∈ TRIPLE − CLIQUE,
there must exist at least three distinct k-cliques in G. Denote any such
three distinct k-cliques in G as V1, V2, V3. Since we go through all triples
of subsets of k vertices of G, we will eventually pick the triple (V1, V2, V3);
consider this branch of execution. By our choice V1, V2, V3 must differ in
at least one vertex, so we do not reject immediately in this branch. Then,
it must be that G contains the an edge between (vi, vj) for all vi, vj ∈ Vℓ

for all ℓ ∈ {1, 2, 3}, because by our choice, V1, V2, V3, are cliques of size k.
So, we accept, as desired. Suppose w /∈ TRIPLE − CLIQUE. If w is not
of the form ⟨G, k⟩, it is rejected immediately. Otherwise, w is of the form
⟨G, k⟩, where G is a graph and k is a positive integer. Suppose, heading for
a contradiction, that we accept the input. For this to happen, we must have
found a triple (V1, V2, V3) of distinct subsets of k vertices such that there
is an edge between each pair of vertices for each of V1, V2, V3. But, by our
definition of a clique, this means that V1, V2, V3 are k-cliques and are distinct.
So, there exist three distinct k-cliques in G so w ∈ TRIPLE − CLIQUE.
Therefore, we have a contradiction and it must be that we reject the input,
as desired.

The initial step of verifying that the input is of the form ⟨G, k⟩ can be
done in linear time with respect to the size of the input. Then, we can

5

CSCI 1010 - Fall’25 n/a

construct the adjacency matrix of G in O(n2) time, where n = |V |; note
that |E| = O(n2). Within each branch, checking that V1, V2, V3 are distinct
can be done in O(k3) by iterating over each triple of vertices across the
three subsets. Then, for each Vi ∈ {V1, V2, V3}, we can check that each
pair of vertices in Vi has an edge in G in time O(k2) using the adjacency
matrix representation of G, since it takes O(1) time to check if there is an
edge between a given pair of vertices. So, overall, N runs in polynomial time
with respect to the size of the input (O(n2)+O(k3)+O(3·k2) = O(n2+k3)).

Since there exists an NTMN that decides TRIPLE−CLIQUE in polynomial
time, we have TRIPLE − CLIQUE ∈ NP .

Now, for the reduction. If G is not of the incorrect format, then return
G. Otherwise, make two copies of the original graph G denoted by G′

and G′′ where the vertices in G′ and G′′ are denoted by e.g. v′ and v′′,
respectively (i.e. use different labels for the vertices). Then, return the
combined graph with G, G′ and G′′ as separate components. Suppose w /∈
CLIQUE. If it is incorrect format, then the output is also in incorrect
format so f(w) /∈ TRIPLECLIQUE. Otherwise, it does not have a k-
clique, so copying the graph three times certainly cannot result in 3 k-
cliques. Suppose w ∈ CLIQUE. Then, the graph has at least one k-clique.
Then, copying the graph twice results in at least three distinct k-cliques,
so f(w) ∈ TRIPLECLIQUE. Copying the graph twice requires at most
quadratic time since the maximum number of edges is n2, where n = |V |.
Thus, this reduction completes in polynomial time.

6

	
	
	

