CSCI 1010 - Fall’25 Theory of Computation Lorenzo De Stefani

HWT7
Due: n/a

Reminder: Submit your assignment on Gradescope by the due date. Submissions
must be typeset. Each page should include work for only one problem (i.e.,
make a new page/new pages for each problem). See the course syllabus for

the late policy.

While collaboration is encouraged, please remember not to take away notes
from any labs or collaboration sessions. Your work should be your own. Use
of other third-party resources is strictly forbidden.

Please monitor Ed discussion, as we will post clarifications of questions there.

Problem 1

Prove that the following language is not Turing-recognizable:
L= {<G1>, <G2>, <G3> ‘ Gl,GQ, and G3 are CFG’s and L(Gl) = L(Gg) = L(G3)}

Hint: You can assume that the following language is undecidable (see page
200 of the textbook):

EQcrc ={(G,H) | G and H are CFGs and L(G) = L(H)}

Solution: In order to prove that L is not Turing-recognizable, we do a proof
by contradiction. Assume that L is Turing-recognizable. We will first show
that L is Turing-recognizable, which would imply that L is decidable by
Theorem 4.11. We will then show that L is undecidable, which contradicts
the previous statement.

Part 1: We first prove that the language L, where L = {w | w does not encode three grammars}U
{{G1),(G2),(G3) | G1,G2,G3 do not generate the same language}, is Turing-
recognizable. To do so, we construct a TM M that recognizes L as follows:

M = “On input (G1), (G2), (G3), where G1, G2, and G3 are CFG’s:

1. Check if G1, Go, and G3 are CFG’s. If one is not a CFG, accept.

2. Write out strings w in ¥* in lexicographical order (i.e. in order of
increasing length, break ties by alphabetical order). For each string
w:

CSCI 1010 - Fall’25 Due: n/a

(a) Run the decider for Acpg on (G1,w), (G2, w), and (G35, w).
(b) If the results are different, accept the input.

3. Reject the input.

In this description, Acpg = {(G,w) | G is a CFG that generates string w}
is the language as described on page 198 of the textbook, where its decidability
is proved in Theorem 4.7. If the three input grammars generate different
languages, then at some point, M will reach a string w that is in some, but
not all, of the languages of the three grammars. Here, the results of Agpa
will differ. In the case that the grammars do generate the same language,
M will be stuck in the loop for step 2, which means that it will never accept
the input, even though it may never reach the reject state.

Part 2: Now, we must prove that L is undecidable to complete the proof.
To do so, we will do a proof-by-contradiction: assume that L is decidable.
With the Turing machine S that decides L, we will construct a TM S’
that decides EQcra = {(G,H) | G and H are CFGs and L(G) = L(H)} of
page 200 in the textbook.

S = “On input (G, H), where G and H are CFGs:

1. Ensure that G and H are CFGs.

2. Run S on (G,G, H). If S accepts, accept; otherwise, reject.

Since we assume that S is a decider, it must also be that S’ is a decider, a
contradiction since the language FQcrg is undecidable. Thus, it must be
that L is undecidable. (Note: A proof of correctness is also necessary here)

Wrap Up: We assume that L is Turing-recognizable. With this assumption,
we prove that L is decidable, as we show that L is also Turing-recognizable
in Part 1. However, this contradicts the fact that L is undecidable, which
we prove in Part 2. Therefore, it must be that L is actually not Turing-
recognizable.

Problem 2

Prove that for any language A, A is Turing recognizable if and only if A <,,
AT M-

Solution:

CSCI 1010 - Fall’25 Due: n/a

e A is Turing-recognizable = A <,, Arps: First, suppose that A is
Turing-recognizable and let M be a Turing machine that recognizes
A. The function f defined by f(w) =< M,w > is a reduction from A
to Arp because it is obviously computable and we have that

w € A < Maccepts w <= < M,w >€ Arpy < f(w) € Ay

e A <, Arpy — A is Turing-recognizable: We know that Apps is
Turing-recognizable, so by Theorem 5.28, A is Turing-recognizable.

Problem 3

Boolean variables can take on values of TRUE or FALSE. Boolean
operators are A (and), V (or) and — (not). A Boolean formula is an
expression with Boolean variables and operators A Boolean formula
is satisfiable if some assignment of Os and 1s to the variables makes
the formula evaluate to TRUE. For example, the formula (—z V y) A
(x V —z) is satisfiable by several assignments including x = FALSE,
y=TRUFE, z=FALSE.

In the Boolean Satisfiability problem (SAT), given a Boolean formula
¢, we aim to decide whether ¢ has any satisfying assignments. That
is, given the encoding (¢) of the Boolean formula ¢ we aim to decide
whether (¢) is a member of the language

SAT = {{¢) |1 is a satisfiable Boolean formula}.

As we will see in class, SAT is a very HARD problem. However, we
can study variations of the problem that are considerably easier.

A clause is a type of Boolean formula in which literals (Boolean variables
or their negation) are connected by only ”or” operators. For example
(1 V xg V —xp) is a clause. We say that a Boolean formula is in
Conjunctive Normal Form (CNF) or clausal normal form if it is a
conjunction (and) of one or more clauses. For example (x; V x9 V
—21) A (21 V 3 V mx9) Ay A (22 V —z1) is a CNF Boolean formula.

We will consider CNF Boolean Formulas such that each variable appears
at most twice (including the times that it appears as negated). For
example, in (x; V 22 V —x1) A (23 V 3 V 2x2) A 24 A (6 V —7) each
variable occurs at most twice, while in (z1VxeV—x1) A (21 VsV xs) A
x1 A (29 V —xp) that is not the case (x; appears 5 times).

CSCI 1010 - Fall’25 Due: n/a

Consider the language. 2RCNFSAT = {(¢)|¢ is a satisfiable CNF
Boolean formula in which each variable occurs at most twice }.

Prove that 2RCNFSAT € P. That is, provide an algorithm that
decides whether an input (¢) is a member of 2RCNFSAT in polynomial
time with respect to the size of the input. Here you can assume that
the size of the input is the number of literals in ¢ (i.e., the sum of
occurrences of variables in ¢). For example, if ¢ = (z1 V 25 V —x1) A
(1 Va3V) Axy A (29 V 0xy), |¢p| =n =09.

Let ¥ be a formula with n variables x1, ..., x,. The following describes
an algorithm to decide whether 1 is satisfiable or not.

Solution

There are multiple ways to approach this problem. Here are two
possible solutions.

Solution 1

Consider the following description of a TM, T, on input string :

1. First we parse the string to check that it is in the correct input
format. If not, we reject. If it is, we proceed.

2. Let x; be a variable in the formula.
3. Parse ¢ to see how x; appears.

(a) if z; appears twice as x; V z; and —x; V z;, delete the two
clauses and add z; V xy to the formula. Apply the algorithm
to the resulting formula.

(b) if z; appears twice as x; or appears twice as —x;, delete the
two clauses and apply the algorithm to the resulting formula.

(¢) if x; appears once, delete the clause it appears in and apply
the algorithm to the resulting formula.

4. Tf the formula has two clauses and is unsatisfiable then reject; if
it has two clauses for less and is satisfiable then accept.

We claim that our reduction process preserves satisfiability:

CSCI 1010 - Fall’25 Due: n/a

For any x;, since ¢ is in CNF and x; appears at most twice, v is of one
of the following forms, where x; does not occur in ¢':

L (x V) A V) ANy
(2 Vag) A (g V) AN or (map Vo) A (mxp Vo) Ay

2.
3. (V) AN or (map V) AN/

In each of these cases, our algorithm reduces the formula to a logically
equivalent one:

L (2 Vo) A (map V) A’ is reduced to (x V ;) A, Indeed, if
(21 V ag) A (—zy V ;) A if and only if 9" and one of x; or zy is
true under the given interpretation, which is equivalent to saying
(xp V ;) AN is satisfiable.

2. (myVag) A(zVa) A or (mayVag) A (—x Va;) A is reduced to
Y. Indeed, (z;Vag) A (2 V) A or (ma V) A(—x V) A is
satisfiable if and only if there is an interpretation under which ¢’
and (z; V) A(x;Va;) or (mx Vag) A (—x Va;) are both true. It
suffices to set x; to TRUE or FALSE for the left-hand side to be
true, so this holds if and only if there is an interpretation under
which v is true if and only if)’ is satisfiable.

3. (xy V) N or (—xy V ;) A are reduced to ¢, Indeed, (z; V
x;) AN or (mxp V x;) A is satisfiable if and only if there is an
interpretation under which ¢" and (z;V xy) or (—z;V) are both
true. It suffices to set x; to TRUE or FALSE for the left-hand side
to be true, so this holds if and only if there is an interpretation
under which ¢ is true if and only if ¢’ is satisfiable.

Moreover, since at each loop, the number of clauses of the formula is
reduced by at least one, and the formula has a finite number of clauses,
the algorithm must terminate.

Time analysis:

For each x;, the algorithm takes linear time: parsing the input of size
n, then adding a clause at the end (or not) and deleting one or two
clauses, and checking the length of the output.

CSCI 1010 - Fall’25 Due: n/a

Since in the worst case we have n distinct x;s. This is repeated n times,
so the total time for the reduction is O(n?)

Therefore, this algorithm runs in polynomial time.
Solution 2
Consider the following description of a TM, T', on input string :

1. First we parse the string to check that it is in the correct input
format. If not, we reject. If it is, we proceed.

2. Repeat the following:
(a) If ¢ is empty, accept.

(b) For each clause in 1, if the clause has at least two literals in
it, accept .

(c) Otherwise, find the clause C containing only a single literal
T; Or XI5

(d) Scan the string to find the clause Cy containing the second
instance of variable z;

(e) If no Cy exists, remove x; from the boolean expression and
go back to (a)

(f) Otherwise, we will find a Cy other than C; containing ;.
We will call the x; in C a and the x; in Cy b.

(g) If a and b have the same parity (e.g. a = x;,b = z; or a =
1z, b = —x;), remove clauses C; and Cy from the expression
and return to (a)

(h) If @ and b have opposite parity and b is the only literal in C|
reject 1.

(i) Otherwise, remove a and b from ¢ and go to (a)

Proof of correctness:

We first show that if a boolean expression is in the 2RCNFSAT format
and each clause contains at least two literals, then the expression is
satisfiable.

Consider a 2RCNFSAT expression ¢ with k clauses and suppose each
clause has at least two literals in it. If it were ever the case that some

CSCI 1010 - Fall’25 Due: n/a

variable x occurs only once in the expression, we could just set the
variable such that the clause containing it is true so t suffices to show
the case where all variables occur exactly twice.

We may also ignore any clauses containing the same variable twice
because we can always assign one such that it evaluates to true and
the remaining clauses will not be affected.

Additionally, it suffices to show the case where each clause contains
exactly two literals. This is because removing the additional literals
from any clause with more than two literals results in an expression
with exactly two literals. If this smaller expression is satisfiable, adding
more literals to the or expression will not change that.

Therefore, we need to show that an expression with k clauses, two
distinct variables in each clause, and each variable appearing exactly
twice is satisfiable. (If you are familiar with graph theory, this is the
same as saying that an undirected graph where each vertex has degree
2 is the union of cycles.)

Consider the following greedy assignment: Start with the first clause
C = (z;/—x; V xj/—x;). If z; is not negated set it to true, otherwise
set it to false. Then, go to the other clause C’ containing x; and make
the same assignment based on the parity of x;. Repeat until we return
to x;. If there are unassigned variables, repeat this process with the
clauses containing them. This process is guaranteed to loop back to
the original x; because we know each variable appears exactly twice
and in different clauses and there are a finite number of clauses. It also
guarantees that each clause has at least one literal that is satisfied.
Therefore ¢ is satisfiable.

Proof of correctness:

If the string is in the wrong format, we immediately reject so assume

¥ is in the 2RCNFSAT format.

In each iteration of the algorithm we perform one of the following:

1. If v is empty, the expression is vacuously true so it is correct to
accept

2. If all clauses have at least two literals, we have already shown that
1) is satisfiable in the above proof so it is correct for T to accept

CSCI 1010 - Fall’25 Due: n/a

here.

3. If a and b are the only variables in their respective clauses and
have opposite parity, then 1 contains an expression of the form
x; A\ —x;, which is not satisfiable. Therefore, it is correct to reject
here.

4. Otherwise, we perform a reduction that at least one clause. Each
of the reductions in the algorithm is the same a reduction described
in the first solution. Each of these was shown to preserve satisfiability
on the proof of correctness of solution 1.

Since the expression has a finite number of clauses and we always reduce
the number of clauses by at least one in each iteration, the algorithm
is guaranteed to terminate. In each case where we terminate, we have
argued that the T' correctly accepts or rejects so T' decides 2RCNFSAT.

Time analysis:

In each iteration of the loop we scan through the string at most once in
each of (a), (b) and (c) and then remove at most two literals/clauses.
Each of these steps require linear time and we perform them at most n
times since we remove at least one clause each time and the number of
clauses is bounded by the size of the input. Therefore, the algorithm
runs in O(n?) time, which is polynomial in n.

	
	

