
CSCI 1010 - Fall’25 Theory of Computation Lorenzo De Stefani

HW6
Due: October 30, 2025

Reminder: Submit your assignment on Gradescope by the due date. Submissions
must be typeset. Each page should include work for only one problem (i.e.,
make a new page/new pages for each problem). See the course syllabus for
the late policy.

While collaboration is encouraged, please remember not to take away notes
from any labs or collaboration sessions. Your work should be your own. Use
of other third-party resources is strictly forbidden.

Please monitor Ed discussion, as we will post clarifications of questions there.

Problem 1

If A ≤m B and B is a regular language, does that imply that A is a regular
language? Prove why or why not?

Solution: If A ≤M B, and B is a regular language, it doesn’t imply that A
is a is a regular language.

We will provide a counterexample. Let A = {0n1n} and let B = {1}. We
have thatA is mapping reducible toB if and only if there exists a computable
function f : Σ∗ → Σ∗ such that for every x ∈ Σ∗, we have x ∈ A if and only
if f(x) ∈ B. Let

f(x) =

{
1 if x ∈ A

0 otherwise.

Note that A is a context-free language (we have seen this in class). We also
know that context-free languages are decidable. Thus, there exists a decider
M that decides A, and the function f can simply use this decider to output
1 if M accepts the input string and 0 otherwise. Thus, f is computable so
A ≤m B. But, B is clearly regular since it is finite, and A is a CFL, so we
have disproven the statement.

Problem 2

Consider the following languages. For each language, determine whether
you can use Rice’s Theorem to prove it is undecidable. If so, use Rice’s

CSCI 1010 - Fall’25 Due: October 30, 2025

Theorem to prove it is undecidable. If not, explain why you cannot use
Rice’s Theorem, and prove it is undecidable without using Rice’s Theorem.

a. Linf = {⟨M⟩ | M is a TM and L(M) is not finite}

b. L101 = {⟨M⟩ | M is a TM and 101 ∈ L(M)}

c. Lseq = {⟨M1⟩, ⟨M2⟩ | M1,M2 are TMs and L(M1) ⊆ L(M2)}

Solution:

a. In this case, you can use Rice’s Theorem to prove that Linf is undecidable.

Rice’s theorem states that if a language L consisting of descriptions of
Turing Machines satisfies the following three conditions, it is undecidable:

(a) ⟨M⟩ ∈ L and L(M) = L(N) ⇒ ⟨N⟩ ∈ L.

(b) ∃⟨M⟩ ∈ L.

(c) ∃⟨M⟩ not in L.

Linf satisfies (1): Suppose ⟨M⟩ ∈ L and L(M) = L(N). Since L(M)
consists of the TM encodings that recognize infinite languages, we
also have that L(N) consists of TM encodings that recognize infinite
languages, which implies that ⟨N⟩ ∈ L.

Linf satisfies (2): Let M be the TM that accepts immediately on all
inputs. Then, L(M) is not finite, and ⟨M⟩ is in Linf .

Linf satisfies (3): Let M be the TM that rejects immediately on all
inputs. Then, | L(M) |= 0, and ⟨M⟩ is not in Linf .

Therefore, by Rice’s Theorem, Linf must be undecidable.

b. In this case, you can use Rice’s Theorem to prove that L101 is undecidable.

Rice’s theorem states that if a language L consisting of descriptions of
Turing Machines satisfies the following three conditions, it is undecidable:

(a) ⟨M⟩ ∈ L and L(M) = L(N) ⇒ ⟨N⟩ ∈ L.

(b) ∃⟨M⟩ ∈ L.

(c) ∃⟨M⟩ not in L.

2

CSCI 1010 - Fall’25 Due: October 30, 2025

L101 satisfies (1): Suppose ⟨M⟩ ∈ L and L(M) = L(N). Since L(M)
contains 101, it must be that L(N) contains 101.

L101 satisfies (2): Let M be the TM that accepts immediately on all
inputs. Then 101 ∈ L(M) and ⟨M⟩ is in L101.

L101 satisfies (3): Let M be the TM that rejects immediately on all
inputs. Then 101 /∈ L(M) and ⟨M⟩ is not in L101.

Therefore, by Rice’s Theorem, L101 must be undecidable.

c. We cannot use Rice’s theorem to conclude that LSEQ is undecidable
because we are examining a language that is composed of tuples of
TMs. The property is not solely about the language of a single TM;
it is dependent on the language of another TM and their relation with
one another.

To prove that LSEQ is undecidable, we will do a proof by contradiction.
Assume that LSEQ is decidable, then there exists a TM R that decides
LSEQ. We construct a TM S that decides EQTM = {⟨M1⟩, ⟨M2⟩ |
M1 and M2 are TMs and L(M1) = L(M2)} using R as follows:

S = “On input ⟨M1⟩, ⟨M2⟩, where M1 and M2 are TMs:

(a) Ensure that M1 and M2 are TMs.

(b) Run R on input ⟨M1⟩, ⟨M2⟩. If R accepts, proceed; if R rejects,
reject.

(c) Run R on input ⟨M2⟩, ⟨M1⟩. If R accepts, accept; if R rejects,
reject.”

Since R decides LSEQ, S decides EQTM . But EQTM is undecidable
as shown in class, so it must be that LSEQ is undecidable, completing
the proof.

For the correctness of S, consider ⟨M⟩, ⟨M ′⟩ ∈ EQTM , which tells us
that M and M ′ are TMs and L(M) = L(M ′). Since L(M) = L(M ′),
we have that L(M) ⊆ L(M ′) and L(M ′) ⊆ L(M). Therefore, R
will accept on inputs ⟨M⟩, ⟨M ′⟩ and ⟨M ′⟩, ⟨M⟩, meaning S accepts
⟨M⟩, ⟨M ′⟩. Now, consider ⟨M⟩, ⟨M ′⟩ /∈ EQTM . Either M is not a
TM, M ′ is not a TM, L(M) ̸= L(M ′), or a combination. If M or
M ′ is not a TM, R will reject immediately. If L(M) ̸= L(M ′), S will
reject on either step 2 or step 3. In all cases, S rejects ⟨M⟩, ⟨M ′⟩.

3

CSCI 1010 - Fall’25 Due: October 30, 2025

For the decidability of S, we run R twice, which is decidable from our
assumption. Therefore, we have that S is decidable.

M on w.) Then run D on ⟨M ′, 1⟩, and return the result.

Problem 3

a. For any natural number k, consider the language A
(k)
TM :

A
(k)
TM = {⟨M,w⟩ | M is a TM with at most k states and M accepts w}

Prove that there is some natural number k where A
(j)
TM is undecidable

for all j ≥ k.

b. A very sparse language is a language L over an alphabet Σ that
contains exactly one string of each length. If L is a very sparse
language, it contains the empty string, exactly one string of length
one, exactly one string of length two, and so on. Prove that if L is a
very sparse language and is Turing-recognizable, then L is decidable.

Solution:

a. To prove this, we can reduce fromAC
TM , which we know to be unrecognizable

and thus also undecidable. Given an input ⟨M,w⟩, a TM that would
recognize AC

TM would need to recognize the cases when M rejects w or
loops infinitely. Suppose M has n states. Then we already know that

a TM for A
(i)
TM when i < n will not accept no matter what, because

the TM has more than i states. If there exists some TM for A
(i)
TM

that rejects ⟨M,w⟩ where i ≥ n, then it must be because M does
not accept w. Now suppose for the sake of contradiction that for all

natural numbers k, there exists some TM Tj that decides A
(j)
TM for

j ≥ k.

Let S be a Turing machine that on input ⟨M,w⟩. It simulates M on
w, accepts if M accepts, and rejects if M rejects. Let n be the number

of states in S. By supposition, we can take some Tj that solves A
(j)
TM

for j > n. We can then build a decider for AC
TM as follows:

On input of ⟨M,w⟩, our decider runs Tj on ⟨S, ⟨M,w⟩⟩. If Tj rejects,
then our decider accepts; otherwise, it rejects.

4

CSCI 1010 - Fall’25 Due: October 30, 2025

This decider will accept iff Tj rejects ⟨S, ⟨M,w⟩⟩. That is, our decider
will accept iff S does not accept ⟨M,w⟩; or, finally, our decider will
accept iff M does not accept w.

So we have clearly constructed a decider for AC
TM , which we know to

be unrecognizable; so our assumption must be false, and there must

be some k such that for all j ≥ k, A
(j)
TM is undecidable.

b. Let L be a recognizable, very sparse language. SupposeR is a recognizer
of L, and we would like to be able to decide L. We can construct such
a decider D as follows:

On input x, measure the length n of x. Over a finite alphabet Σ,
there are a finite number of strings with length n. So, D runs R on all
of these strings simultaneously. Since we know that there is exactly
one string in L of each length, eventually one of these strings must be
recognized; and because we are running each simultaneously (by doing
them one step at a time), even if some loop forever it will not block
finding the string in L.

Thus, D’s simulations of R will accept exactly once on one string of
length n, which must be the corresponding string in L. If the accepted
string is x, D accepts because x must be in L. Otherwise D rejects,
because the only string in L with the same length as x must not be x.
Hence, D is a decider for L.

5

	
	
	

