CSCI 1010 - Fall’25 Theory of Computation Lorenzo De Stefani

HW3
Due: n/a

Reminder: Submit your assignment on Gradescope by the due date. Sub-
missions must be typeset. Each page should include work for only one prob-
lem (i.e., make a new page/new pages for each problem). See the course
syllabus for the late policy.

While collaboration is encouraged, please remember not to take away notes
from any labs or collaboration sessions. Your work should be your own. Use
of other third-party resources is strictly forbidden.

Please monitor Ed discussion, as we will post clarifications of questions there.
Problem 1

Give, without proof, a CFG that generates each of the following languages

1. Ly = {w € {0,1}*| w is a palindrome}

2. Ly = {w € {0,1}*| in every prefix of w the number of 0’s is at least the number of 1’s}

Solution:

There are more than 1 possible CFG for each of these languages, but here
are two that work:

1. Ans: S — 050|151|1]0]e
2. Ans: S — 05]0S1S]e

Problem 2

Provide a deterministic push-down automata that recognizes the following
language L over the alphabet ¥ = {0,1}:

L = {w| w has exactly half as many 0’s as 1’s.}

Solution :

CSCI 1010 - Fall’25 Due: n/a

The main idea behind this solution is every time we see a 0, we will push
two 0’s to the stack, and every time we see a 1, we will push one 1 to the
stack. But, if we see a 0, and there’s a 1 on the stack, then we pop two 1’s
instead. And if we see a 1, and there’s a 0 on the stack, then we pop one 0
instead.

The 0’s and 1’s cancel each other out in this way, but seeing a 0 is “worth”
twice as much as seeing a 1. So, we only accept if two times the number of
0’s equals the number of 1’s, i.e. the 0’s and 1’s all canceled each other out
and the stack is empty at the end.

There’s some additional details to consider, like what do we do for the string
101, e.g. when there’s only one 1 on the stack and we see a zero, but that’s
the high-level idea.

When constructing our PDA, we will construct it so that our stack only ever
contains all 0’s or all 1’s at one time. This allows us to cancel out the 0’s
and 1’s without resorting to nondeterminism.

We will also need to make some intermediate states in order to push/pop
more than one symbol to the stack, which is why it looks like it’s more
complex than it needs to be.

Consider the following deterministic PDA M:

CSCI 1010 - Fall’25 Due: n/a

All undrawn transitions are assumed to go to the sink state (it’ll turn out
that no input string halts in the sink state by the way that we control the
stack, but we must include it anyways).

We will show that L(M) = L.

Let Wy, (0) = 2% # 0’s in w and Wy, (1) = # 1’s in w, i.e. the 0’s are worth
twice as much. First, we will show that we have the following invariants for
any w (and thus any prefix of w also):

o If Wy, (0) > Wy, (1): The stack contains a $ followed by only 0’s and
the number of 0’s is equal to W, (0) — W,,(1). Also, the PDA halts in
state q7.

o If Wy, (1) > Wy,(0): The stack contains a $ followed by only 1’s and

CSCI 1010 - Fall’25 Due: n/a

the number of 1’s is equal to Wy, (1) — Wy, (0). Also, the PDA halts in
state ga.

o If W, (0) = Wy (1): The stack contains only a $ and the PDA halts in
either states ¢ or g¢s.

Note that states g3, q4, g5, g6, g9, q10 Serve as transition states, which we will
use to push/pop two symbols to/from the stack. Note that it is sufficient to
prove these invariants, because the PDA ends in an acceptance state if and
only if W(0) = W(1) at the end of the input so the number of 1’s is two
times the number of 0’s. We will proceed by induction on the length & of
the input string w:

e Base case: k = 0 so w = €. In this case, we start in qg, then we take
the transition to ¢;. We have that W(0) = W (1) = 0. So, the PDA
accepts, as desired.

e Inductive step: k£ > 1. Suppose we have a string w over the alphabet
{0,1} of length k£ that makes M terminate in the state ¢; with the
appropriate stack. We will show that concatenating w with any symbol
s € {0,1} to make a new string w’ also makes M terminate in an
appropriate state with the appropriate stack. We have to consider the
following cases based on w:

1. Wy(0) > Wy, (1). In this case, by our hypothesis, we are in state
q7. If s = 0, then we transition to state g9 and then to ¢ and
then back to g7, pushing two 0’s to the stack. Previously, by the
inductive hypothesis, there are W,,(0) — W, (1) 0’s in the stack.
Now, there are Wy, (0) — Wy,(1) +2 0’s in the stack. Note that w’
has one more 0 than w so W, (0) — W,(1) +2 = Wy (0) — Wy (1).
Thus, there are W,/ (0) — W, (1) 0’s in the stack. If this quantity
is greater than zero, we do nothing. If this quantity is equal to
zero, then the stack is just a $, so we transition to ¢g, accept-
ing. Therefore, M terminates in the appropriate state with the
appropriate stack.

If s =1, then we would pop a 0 from the top of the stack. Then,
we have two cases. If the top of the stack is a $, then we transition
to gs in which case Wy (1) — Wy (0) = 1. If the top of the
stack is a 0, then we stay in g7 in which case W, (0) — W (1) =

CSCI 1010 - Fall’25 Due: n/a

W (0) — Wy (1) — 1. Therefore, M terminates in the appropriate
state with the appropriate stack.

2. Wy(1) > Wy, (0). This argument follows similarly to that of the
first case.

3. Wy(0) = Wy, (1). This argument follows similarly to that of the
first case.

Problem 3

For any language A, let PREFIX(A) = {v|vu € A for some non-empty string u},
i.e. the set of proper prefixes of strings in A. Show that the class of context-
free languages is closed under the PREFIX operator.

Ans: Let A be a context free language and G be the context free grammar
for it. Assume G is in Chomsky normal form for convenience.

Note that there is an edge case in which A = {¢}, in which case PREFIX(A) =
(), but this is trivially context-free. So we’ll assume this isn’t the case moving
forward.

In order to prove that A is closed under the PREFIX operation, we will
create a grammar G’ for PREFIX(A) thus proving that it is context free as
well.

1. For every rule X — Y Z € G, add to G’ the following rules:
o X* > Y*Z*
o X' 5 Y*Z
o X' Y
e And if X is the starting variable, we also add X — Y*Z' and

X — e

2. For every rule X — ¢ (where ¢ is a terminal symbol) in G, add to G’
the rule X* — c.

3. For every variable X in G, add the rule X’ — € to G’.

To prove the correctness of this grammar, we would argue first that our
initial rule must get us a smaller string and then from there G’ can generate
any proper prefix.

CSCI 1010 - Fall’25 Due: n/a

Instead, here we will prove closure under PREFIX using a proof by con-
struction with a PDA as follows:

Note: the following explanation is much, much longer than needed,
but we wanted to provide a proof for why each detail of the PDA
works in case it clears up confusion

We will proceed with a proof by construction to show that if L is a context-
free language, then PREFIX(L) is also a context-free language. Note that
doing so also shows that the class of context-free languages is closed un-
der the PREFIX operation. Let L be a context free-language over the
alphabet 3. Since a language is context-free if and only if some PDA recog-
nizes it, there must exist a PDA that recognizes L. Denote any such PDA
that recognizes the context-free language L as P = (Q, 3, T, 0, qo, F)). We
will construct a PDA P’ using P to recognize PREFIX(L) as follows. Let

n:=|qQl.

First, we create one copy of P denoted by Py. Then, we create a modified
copy of P denoted by P;. This modified copy P; has the states Q x {a,b}.
What this means is that for each state ¢; € @), we have two corresponding
states in Pi: (¢, a) and (g;,b). We will refer to a given state in P; as an "a”
state if it is of the form (¢;,a) and a ”b” state if it is of the form (g;, b). The
idea behind this is so that the execution of P’ first consumes all the symbols
of an input string, and then the ”b” states represent guessing the execution
of non-empty suffixes; but, we still need the "a” states because otherwise
the € transitions of P may result in an empty suffix (we will formally look
at this later on). So, the states of P are QU (Q % {a,b}). Also, P’ has the
same alphabet ¥ and stack alphabet I' as P.

Then, we describe the transitions of P’ as follows. First, we have that Py
retains the original transitions of P (and P; does not retain the original
transitions). Then, for each state g; of Py, we add the transition €, — ¢
from ¢; in Py to (g;,a) in P;. Finally, for each transition from a state ¢; to
a state ¢; in P, we add a transition in P; based on two cases:

1. If the transition is of the form e,u — v for u,v € (I' Ue¢), then we add
a transition of the form €,u — v in P; from (g;,a) to (gj,a) and from

(i, b) to (g, b)-

CSCI 1010 - Fall’25 Due: n/a

2. If the transition is of the form s,u — v for s € ¥ and u,v € (I' Ue),
then we add a transition of the form ¢,u — v in P from (g¢;,a) to
(gj,b) and from (g;,b) to (gj,b).

The starting state of P’ is the starting state gg of P. The accepting states
of P’ are precisely the ”b” states in P; whose corresponding state in P was
accepting (note that none of the states in Py are accepting states).

Now, we will show that P’ recognizes PREFIX(L). To do so, we will show
that given any input string v, P’ first simulates P’s executions of v (in Pp)
and then in a separate process, attempts to guess the executions of strings
win P (in P;) such that vu € L. We will show that this is equivalent to the
original statement by also showing that P’ only accepts such executions in
which u is non-empty (thereby only accepting v if it is a proper prefix of at
least one string in L).

First note that since there are no transitions going from a state in P; to
a state in Py and since P; only contains € transitions (with respect to the
symbol in the input string), any execution of P’ that uses a transition from
Py to P; without completely consuming all the symbols in v beforehand will
either continuously loop forever in P; without ever being able finish con-
suming the symbols in v (which is a condition required to halt) or go to the
dump state. Therefore, when P’ receives v as an input, the only executions
that can possibly end in an accepting state of P’ are the ones in which all
the symbols of v are consumed by Py (as opposed to P;). Moreover, since
none of the states in Py are accepting, the only executions that can possibly
halt in an accepting state of P’ are the ones in which all the symbols of v are
consumed by Py and which use a transition from Fy to P;. Along with the
fact that P, retains the transitions of P, we have that P’ first completely
handles P’s executions of v in Py and then in a distinctly isolated process
handles wu.

A given execution of P’ will first fully consume the input string v and then
since the transitions from Py to P; preserve the same corresponding state in
P and also do not modify the stack (since these transitions are of the form
€,€ — €), P’ will be in the same state with the same stack as if P received
v, once transitioning to P; from FPy. Now, we will show that the distinctly
isolated process that handles guesses of u in P; makes P’ accept the input

CSCI 1010 - Fall’25 Due: n/a

string v if and only if vu € L and u is non-empty. First, we have that P;’s
transitions with respect to the states and stack of P are identical with the
only change being that transitions that consume a non-empty symbol from
the input string are changed to instead take €. So, since any execution in
Py starts in the same state as it would have when P receives v as an input,
we have that P; can nondeterministically simulate any number of subse-
quent input symbols in the same way as P strictly after P receives input
v. Moreover, for a given execution to be in P;, all the symbols of v must
have been consumed, so P; and thus P’ can halt at any time. Note that an
input string is merely a finite sequence of input symbols, so P; can nonde-
terministically simulate the execution of any string v € X* in the same way
as P after P receives input vu. So, when receiving input v, P’ can simulate
the execution of any string vu in the same way as P after P receives input vu.

Now, it remains to show that in order for P’ to accept v, the guess u must
be non-empty. We note that all transitions from Py to P; go to ”a” states in
Py, none of which are accepting. Then, all of the transitions in P that were
€ transitions with respect to the input symbol make ”a” states transition to
”a” states. So, prior to taking a transition in P; that represents consuming
an input symbol, implying that the guess u is non-empty, it is guaranteed
that no possible execution of P’ accepts v. Moreover, if P; is in an "a” state
and takes a transition that was a non-empty transition in P with respect
to the input symbol, P, must go to an ”b” state by construction. And if
P is in an ”b” state, it can only transition to ”b” states. So, a given ex-
ecution in P’ can only possibly be accepted if it takes a transition in P;
that represents a non-empty transition in P, since none of the "a” states
can possibly be accepting. Then, we have that P’ halts in an accepting
state if and only if there is an execution in which the guess u causes P;
to transition from its ”starting” state (the state directly after transitioning
from Pp) to a "b” state in P; that corresponds to an accepting state of P.
And since P; can only be in a ”b” state if the guess u is non-empty, we have
that when given input v, P’ simulates P’s possible executions of strings of
the form vu, for non-empty w, and accepts v if only if P accepts vu. So,
noting that Py first fully simulates the execution of v in P and P; there-
after simulates the remaining execution of a guess u in P, we have that P’
accepts an input string v if and only if vu is accepted by P, for some non-
empty string w. This implies that P’ accepts an input string v if and only
if vu € L for some non-empty string u, by choice of P, completing the proof.

	
	
	

