
CSCI 1010 - Fall’25 Theory of Computation Lorenzo De Stefani

HW10
Due:

Reminder: Submit your assignment on Gradescope by the due date. Submissions
must be typeset. Each page should include work for only one problem (i.e.,
make a new page/new pages for each problem). See the course syllabus for
the late policy.

While collaboration is encouraged, please remember not to take away notes
from any labs or collaboration sessions. Your work should be your own. Use
of other third-party resources is strictly forbidden.

Please monitor Ed discussion, as we will post clarifications of questions there.

Problem 1

In the Maximal Clique Problem, given an undirected graph G = (v,E) and
a positive integer value k we want to decide if k is the exact size of the
largest clique in G. We can define the corresponding language as:

MAXCLIQUE = {< G, k > |k is the exact size of the largest clique in G}

1. Modify the reduction f(·) seen in class from 3SAT to CLIQUE, to
obtain a computable function f∗(·) that given as input ϕ returns a
pair (G, k) where G is an undirected graph and k is a non-negative
integer value such that

• if ϕ is not a Boolean formula in 3CNF, G includes a single edge
and k = 1

• if ϕ is a satisfiable Boolean formula in 3CNF with k clauses then
the exact size of the clique of maximum size in G is k.

• if ϕ is a non-satisfiable Boolean formula in 3CNF with k clauses
then the exact size of the clique of maximum size in G is k − 1.

2. Argue that MAXCLIQUE is NP-hard.

3. Argue that MAXCLIQUE is coNP-hard.

4. Argue that MAXCLIQUE ∈ NP =⇒ HAMPATHc ∈ NP

CSCI 1010 - Fall’25 Due:

Solution Note: the following solutions would have to be written out more
to receive full credit.

1. We define f as follows:

• if the formula is not in 3CNF form, output < K2, 1 >

• if the formula is in 3CNF form, do the same construction as in
the notes, but add a k − 1 clique.

Showing this construction is computable in polynomial time is similar
to the notes in class. Further, according to the notes there is a k
clique where k is the number of clauses if and only if the formula is
satisfiable. It is impossible to have a larger clique: suppose for the
sake of contradiction that there is a k + i clique where i > 0. Then
two variables in the same clause must be connected by the pigeonhole
principle, which is a contradiction by construction. Therefore, the
maximum clique is of size k. If the formula is unsatisfiable and in
3CNF form, then its largest clique is k − 1 by construction. If it is in
the incorrect format f outputs < K2, 1 >.

2. 3SAT is NP-complete, and therefore NP hard. Since we have a
polynomial time reduction from 3SAT to MAXCLIQUE, any problem
inNP can be reduced to MAXCLIQUE in polynomial time by chaining,
so MAXCLIQUE is NP hard.

3. We showed in class that a language L is NP-complete iff its complement
is coNP-complete. Thus, 3SATC is coNP-complete. We do a similar
reduction from 3SATC , but passing < G, k − 1 > when the formula
is in 3CNF form and < K2, 2 > when it is not instead. Since 3SATC

is coNP-hard and there is a polynomial time reduction from 3SATC to
MAXCLIQUE, any problem in coNP can be reduced toMAXCLIQUE
in polynomial time by chaining of reductions. Therefore,MAXCLIQUE
is coNP-hard

4. HAMPATH discussed in slide 16, it is a language in NP . Therefore,
HAMPATHC is in coNP. Since MAXCLIQUE is coNP-hard, there is
a polynomial time reduction from HAMPATHC to MAXCLIQUE. If
MAXCLIQUE is in NP, HAMPATHC must also be in NP.

Problem 2

Prove that MAXCLIQUE ∈ PSPACE.

2

CSCI 1010 - Fall’25 Due:

Solution

Rough idea: construct adjacency matrix (it takes O(n2) space). A list of
edges (at most O(n2) space) also works. Then, for every subset of k distinct
vertices check if they form a clique (for each pair of vertices in this subset,
loop through all edges to make sure that there exists an edge between them).
If no subset of size k is a clique, reject. Then, do the same procedure for
subsets of size k + 1. If one of those form a clique, reject. If the procedure
ends, accept. The key to making this PSPACE is reusing the same space
for each check of k and k + 1 vertices and also using the same space to
store each subset (e.g. enumerate through the binary strings x of length
n from 000...000, 000...001, 000...010, 000...011, to 111...111, each of which
corresponds to a unique subset with xi = 1 meaning vertex i is in the
current subset and xi = 0 meaning vertex i is not in the current subset).

Problem 3

Please review with attention the definition of the TQBF language as given
in the textbook on pages 338-341. Please review the proof of this language
being a member of PSPACE and PSPACE-hard.

Given a Quantified Boolean formula ϕ = Q1x1, Q2x2, . . . Qmxm[ψ] such that
ψ is a Boolean formula with m variables, we say that ϕ is a Quantified CNF
Boolean formula if ψ is a Boolean formula in CNF format.

The language TQBF − CNF = {< ϕ > |ϕ is a true fully quantified CNF
Boolean formula} is also PSPACE-complete.

Similarly, given a Quantified Boolean formula phi = Q1x1, Q2x2, . . . Qmxm[ψ]
such that ψ is a Boolean formula with m variables, we say that ϕ is a
Quantified 3CNF Boolean formula if ψ is a Boolean formula in 3CNF format.

Consider now the language TQBF − 3CNF = {< ϕ > |ϕ is a true fully
quantified 3-CNF Boolean formula}.

1. Prove TQBF − 3CNF ∈ PSPACE.

2. Prove TQBF − 3CNF is PSPACE-hard.

Hint: Read with lots of care the results for TQBF. This should give you
all the needed inspiration. For the proof of hardness, I would strongly
suggest proving TQBF − CNF ≤p TQBF − 3CNF . Perhaps we have

3

CSCI 1010 - Fall’25 Due:

seen something similar before....careful how you manage (or quantify) the
new variables.

Solution The language TQBF −CNF is given to be in PSPACE. Thus,
there exists a decider M ′ that decides TQBF −CNF in polynomial space.
We will construct a decider M to decide TQBF − CNF as follows.

• First, check whether the input w is a quantified boolean formula ⟨ϕ⟩,
where ϕ = Q1x1, Q2x2, . . . Qmxm[ψ] such that ψ is a Boolean formula
in 3CNF. If not, reject.

• Provide ⟨ϕ⟩ as input toM ′. IfM ′ accepts, accept. IfM ′ rejects, reject.

We can check the format using a polynomial amount of space with respect
to the size of the input. Then, we know that M ′ takes polynomial amount
of space with respect to the size of the input. So, the total space used is
polynomial with respect to the size of the input.

Now, we have the proof of correctness. Suppose w ∈ TQBF − 3CNF .
Then, it is of the correct format, so we do not reject on step 1. Note that
TQBF − 3CNF ⊆ TQBF − CNF , so since w ∈ TQBF − 3CNF , it must
be that w ∈ TQBF − CNF . So, M ′ accepts, and we accept, as desired.

Suppose w /∈ TQBF − 3CNF . If it is not of the correct format, we reject
in step 1. So, if we don’t reject in step 1, it must be that w = ⟨ϕ⟩ is of the
correct format. So, it must be that ψ is 3CNF . So, if w /∈ TQBF −3CNF ,
it must be because the quantified boolean formula is not true. So, it must
be that M ′ rejects, so we reject, as desired.

For part 2, here’s the rough idea. We first use the transformation in Lecture
18, Slide 7 to convert ψ from CNF to 3CNF using polynomial space. This
might introduce some new variables that did not appear in ψ originally,
so we need to add quantifiers for these variables. We can make all of these
quantifiers of the form ∃ (“there exists”) to preserve whether the new formula
we make is True or False as a whole.

4

	
	
	

