
Twitter and While Loops

April 18 2016

Today

• Using GeCoords.py to extract geo locations to
write a KML file

• Getting Twitter posts using tweepy

• While loops

• More powerful functions to get Twitter posts

– Using while loops

Twitter

• You know what it is

– 140-character text, plus:

• Favorite/retweet count

• Geographical coordinates

– Each user has a timeline

• You can query a user’s timeline

– All tweets are accessible

• You can search for specific terms

We’re doing
both

Let’s install tweepy

• External Python module
– Help us using the Tweeter API

• (API: Application Programming Interface)

• Not in the default installation
– Install with “sudo easy_install tweepy” or

“pip install tweepy” in your terminal (Mac OS
terminal)
• A little more cumbersome on Windows

• Feel free to request help from us installing packages

Let’s install tweepy

Authentication Keys

• We need to “authenticate” on Twitter…

– Tell them who we are

– We get “keys” to use API functionality

• Do not share your application keys with anyone else!

– Let’s do it together

Authentication Keys

• Go to https://apps.twitter.com

• Click on:

https://apps.twitter.com

Authentication Keys

Authentication Keys

• Look for “Application Settings”, “Consumer Key”,
and then click on:

– “manage keys and access tokens”

Authentication Keys

• Click on “Create My Access Token” button

Authentication Keys

• You now have this:

Keys will be quite large, and differ from this first letters

Do NOT share this with anyone! (It encodes your password.)

…

…

…

…

Download tw1.py

Copy/paste it there

Run the program!

Really

• Do NOT share your authentication info

• Or you’ll expose your Twitter account!

tw1.py (Searching)
import tweepy

import codecs

Consumer keys and access tokens, used for authentication

consumer_key = ''

consumer_secret = ''

access_token = ''

access_token_secret = ''

Gives you back an api object to interact with

def initialize():

auth = tweepy.OAuthHandler(consumer_key, consumer_secret)

auth.set_access_token(access_token, access_token_secret)

api = tweepy.API(auth)

return api

tw1.py (Searching)

Main program

api = initialize()

Gives back a list of tweet objects

q: query to perform

count: number of tweets to collect (maximum 100)

geocode: area to search (lat,lng,radius)

results = api.search(q="exam", count=100,

geocode="41.8262,-71.4032,10mi")

for result in results:

print('Text: ', ascii(result.text))

print('User: ', ascii(result.user.screen_name))

print('# Retweets: ', result.retweet_count)

print('# Favorites: ', result.favorite_count)

Main program

api = initialize()

Gives back a list of tweet objects

q: query to perform

count: number of tweets to collect (maximum 100)

geocode: area to search (lat,lng,radius)

results = api.search(q="exam", count=100,

geocode="41.8262,-71.4032,10mi")

for result in results:

print('Text: ', ascii(result.text))

print('User: ', ascii(result.user.screen_name))

print('# Retweets: ', result.retweet_count)

print('# Favorites: ', result.favorite_count

tw1.py (Searching)

Empty string if you don’t care

tw2.py (Querying Timelines)

In our webpage, you also find tw2.py,
which queries the timeline for a specific user.

Copy/paste your authentication information there,
and it’s ready to use

tw2.py (Querying Timelines)

Main program

api = initialize()

Gives back a list of tweet objects

screen_name: user name of the queried timeline

count: number of tweets to collect (maximum 100)

results = api.user_timeline(screen_name='BrownUniversity’,

count=100)

for result in results:

print('Text: ', ascii(result.text))

print('User: ', ascii(result.user.screen_name))

print('# Retweets: ', result.retweet_count)

print('# Favorites: ', result.favorite_count

Only 100?

• Well, 100 per query

– You can collect more than 100, going back a week

• Limitation imposed by Twitter

• If you want 850 tweets, you need to tell Twitter
this:

• Hey Twitter, give me 100 tweets (one query)

• Hey Titter, give me 100 more, older than those I got before

• …

• Hey Titter, give me 100 more, older than those I got before

• Hey Titter, give me 50 more, older than those I got before

How do we do this?

• Let’s learn a new Python trick

While Loops

• A Python language construct
– You can use in any Python program

• It’s a loop construct
– Repeats the body of the loop while the specified condition

evaluates to True

def example1():

text = ''

while text != "stop":

text = input('give a new value for text: ')

print('text is now: ', text)

While Loops

def example2():

myList = [10, 20, 30, 40, 50, 60] # len is 6

pos = 0

while myList[pos] < 35 and pos < len(myList):

print(myList[pos])

pos = pos + 1

Consider this example:

While Loops
• First time: pos = 0

– myList[pos] < 35 (10 < 35)

– pos < len(myList) (0 < 6)

def example2():

myList = [10, 20, 30, 40, 50, 60] # len is 6

pos = 0

while myList[pos] < 35 and pos < len(myList):

print(myList[pos])

pos = pos + 1

While Loops
• First time: pos = 0

– myList[pos] < 35 (10 < 35)

– pos < len(myList) (0 < 6)

• True
– Enter the loop

• print(myList[pos]) (10)

•

def example2():

myList = [10, 20, 30, 40, 50, 60] # len is 6

pos = 0

while myList[pos] < 35 and pos < len(myList):

print(myList[pos])

pos = pos + 1

While Loops
• First time: pos = 0

– myList[pos] < 35 (10 < 35)

– pos < len(myList) (0 < 6)

• True
– Enter the loop

• print(myList[pos]) (10)

• makes pos = 1

def example2():

myList = [10, 20, 30, 40, 50, 60] # len is 6

pos = 0

while myList[pos] < 35 and pos < len(myList):

print(myList[pos])

pos = pos + 1

While Loops
• Second time: pos = 1

– myList[pos] < 35 (20 < 35)

– pos < len(myList) (1 < 6)

def example2():

myList = [10, 20, 30, 40, 50, 60] # len is 6

pos = 0

while myList[pos] < 35 and pos < len(myList):

print(myList[pos])

pos = pos + 1

While Loops
• Second time: pos = 1

– myList[pos] < 35 (20 < 35)

– pos < len(myList) (1 < 6)

• True
– Enter the loop

• print(myList[pos]) (20)

•

def example2():

myList = [10, 20, 30, 40, 50, 60] # len is 6

pos = 0

while myList[pos] < 35 and pos < len(myList):

print(myList[pos])

pos = pos + 1

While Loops
• Second time: pos = 1

– myList[pos] < 35 (20 < 35)

– pos < len(myList) (1 < 6)

• True
– Enter the loop

• print(myList[pos]) (20)

• makes pos = 2

def example2():

myList = [10, 20, 30, 40, 50, 60] # len is 6

pos = 0

while myList[pos] < 35 and pos < len(myList):

print(myList[pos])

pos = pos + 1

While Loops
• Third time: pos = 2

– myList[pos] < 35 (30 < 35)

– pos < len(myList) (2 < 6)

def example2():

myList = [10, 20, 30, 40, 50, 60] # len is 6

pos = 0

while myList[pos] < 35 and pos < len(myList):

print(myList[pos])

pos = pos + 1

While Loops
• Third time: pos = 2

– myList[pos] < 35 (30 < 35)

– pos < len(myList) (2 < 6)

• True
– Enter the loop

• print(myList[pos])(30)

•

def example2():

myList = [10, 20, 30, 40, 50, 60] # len is 6

pos = 0

while myList[pos] < 35 and pos < len(myList):

print(myList[pos])

pos = pos + 1

While Loops
• Third time: pos = 2

– myList[pos] < 35 (30 < 35)

– pos < len(myList) (2 < 6)

• True
– Enter the loop

• print(myList[pos])(30)

• makes pos = 3

def example2():

myList = [10, 20, 30, 40, 50, 60] # len is 6

pos = 0

while myList[pos] < 35 and pos < len(myList):

print(myList[pos])

pos = pos + 1

While Loops
• Forth time: pos = 3

– myList[pos] < 35 (40 < 35) ----- false

– pos < len(myList) (2 < 6) ----- still true

def example2():

myList = [10, 20, 30, 40, 50, 60] # len is 6

pos = 0

while myList[pos] < 35 and pos < len(myList):

print(myList[pos])

pos = pos + 1

While Loops
• Forth time: pos = 3

– myList[pos] < 35 (40 < 35) ----- false
– pos < len(myList) (2 < 6) ----- still true

• False
– DO NOT enter the loop

def example2():

myList = [10, 20, 30, 40, 50, 60] # len is 6

pos = 0

while myList[pos] < 35 and pos < len(myList):

print(myList[pos])

pos = pos + 1

Using while loops to get more tweets

If you ask for 5 tweets (either from a timeline or based on a search term),
Twitter will give you the 5 most recent ones

Newer tweets have bigger IDs

Using while loops to get more tweets
If you want 10 tweets…

2) Look at them

3) Get their minimum ID (6)

4) Ask again for tweets with ID 5 or less

Say you may only ask for 5 at a time…

1) Get your new 5 tweets

Using while loops to get more tweets
If you want 10 tweets…

2) Look at them

3) Get their minimum ID (6)

4) Ask again for tweets with ID 5 or less

Now ask again for 5 tweets more

1) Get your new 5 tweets

Using while loops to get more tweets
If you want 10 tweets…

2) Look at them

3) Get their minimum ID (6)

4) Ask again for tweets with ID 5 or less

1) Get your new 5 tweets

Of course, new tweets may show up

Now ask again for 5 tweets more

twcol.py

(tw1.py and tw2.py on while loops)

• Ask for 100 tweets
• If we got nothing, return nothing
• Else, get the minimum ID
• While we are not done

– Ask for 100 more tweets (older than the minimum ID)
– Declare it done if we

• (i) get nothing (all appropriate tweets have been consumed) or
• (ii) the total exceeds the amount requested

– Make sure to update the minimum ID

• Generates CSV files with the obtained tweets

twcol.py

(tw1.py and tw2.py on while loops)

• Check the file in our course webpage

– You have Python-maturity to understand it 

