Project 1 and Senator x Senator Ranking

Feb 16 2016

CSCI 0931 - Intro. to Comp. for the Humanities and Social Sciences

Office Hours

- Different Office Hours This Week & Next Week
 - Wednesday 3-5pm, CIT 315

Due Dates Proposal: 2/25 Project: 3/3

- Choose a problem related to the work we've done so far in the course
 - Choose a different dataset and perform a similar analysis
 - Perform a different analysis on the Senate dataset to answer a different political question
- You must have a **testable** hypothesis!
 - "Senators who vote similarly to Sanders are Democrats and senators who vote differently from Sanders are Republicans"

- Proposal
 - Background
 - Claim
 - Data
 - Analysis Steps
 - Potential Roadblocks

Meet with TAs/instructor! Ask Questions!

- Proposal
 - Background
 - Claim
 - Data
 - Analysis Steps
 - Potential Roadblocks
- Project

All Google Spreadsheets and a website

Meet with TAs/instructor! Ask Questions!

Grading Rubric

- Proposal
 - Clarity
 - Forethought
- Design
- Execution
 - Did you do it right? Handle bad data?
- Website (Google Sites easy!), Analysis, Discussion

Proposal Rubric

- Testable hypothesis
- Problem context for hypothesis
- Data description (including source)
- Steps
 - I'll import names and grades into two columns;
 - I'll compute the average number of cases per region;
 - I'll sort by the number of occurrences."
 - Numbered
 - Specific
 - Manageable

Proposal Rubric, cont.

- How will hypothesis be evaluated using the results?
- What would validate/invalidate the hypothesis?
- Description of a visual representation of results (or reason why no such thing is appropriate)
- Potential roadblocks
 - Example: "I don't yet know how to measure variability in data"
 - Example: "Data is in form that may require tricky manipulation" (with details).

Due Dates Proposal: 2/25 Project: 3/3

Category	# Points	Earned
Proposal	25	
Design Elements	25	
Execution	25	
Code Quality	10	
Website Presentation & Discussion	15	
TOTAL	100	

~8h of focused work

Proposal (25 points)

- (4 points) A hypothesis is stated that can be tested using data and computation. It is specific enough that you can reasonably evaluate it within the time frame for the project. "I will rank all senators" is not a testable hypothesis it is an activity that might result in some evidence that a hypothesis is true or false. Instead, a hypothesis is a statement one might suspect is true and can evaluate methodically. For instance, "Senators with democratic voting records are more likely to be called 'liberal' in the media than senators with more conservative voting records."
- (2 points) The hypothesis is placed in the context of a problem. Why is the hypothesis interesting to explore?
- (2 point) There is a brief description of the data to be used in the project, and the data source is specified, including a URL if the data is coming from the internet.
- (2 points) There is a brief description of the format of the data (e.g., file type and organization of file) and how it will be imported into a spreadsheet.
- (10 points) The steps of the analysis are numbered, specific, and manageable. "I will import the data and cluster according to votes" is not clear. "I will import all the data for all 2,012 congressional meetings" is not manageable. Be specific. Break your tasks into reasonable chunks.
- (2 points) There is a description of how the hypothesis will be evaluated the using the results. What possible results would be confirming evidence for the hypothesis, and what would be disconfirming evidence for the hypothesis?
- (1 point) There is a description of a chart or visualization that will help present the future results. For example, "I will create a bar chart comparing these three averages." If no chart or visualization seems appropriate for presenting the results, there is an explanation why.
- (2 points) There are some roadblocks listed what could go wrong with the steps you listed? For full credit, no obvious roadblocks are missed. Obvious roadblocks are things like "I want to perform a particular statistical test, but we haven't covered that formula in class and I don't know how to do it."
- _____ Total

http://catalog.data.gov/dataset

187,082 datasets found

National Stock Number Extract 2942 recent views

General Services Administration — National Stock Number extract includes the current listing of National Stock Numbers (NSNs), NSN item name and descriptions, and current selling price of each... none

Consumer Complaint Database 🛃 1807 recent views

Consumer Financial Protection Bureau — These are complaints we've received about financial products and services.

CSV CSV JSON XML api

U.S. International Trade in Goods and Services 21215 recent views

Department of Commerce — Monthly report that provides national trade data including imports, exports, and balance of payments for goods and services. Statistics are also reported on a...

HTML

Federal Logistics Information System Web Search (WebFLIS) 213 recent views Department of Defense — Federal Logistics Information System Web Search (WebFLIS) provides

essential information about supply items including the National Stock Number (NSN), the item...

Exc

Crimes - 2001 to present 🛃 824 recent views

City of Chicago - This dataset reflects renorted incidents of crime (with the excention of murders

OK, Last Class on Senator Ranking

• Learn some Google Spreadsheets tricks first

Compare Every Pair in One Table

What We Have:

	1:1	1:2	1:3	1:4
Alexander	Yea	Yea	Yea	Yea
Ayotte	Yea	Yea	Yea	Yea
Baldwin	Nay	Yea	Yea	Yea
Barrasso	Yea	Yea	Yea	Yea

What We Want:

	Alexander	Ayotte	Baldwin	Barraso
Alexander	1	0.314285714	0.085714286	0.117647059
Ayotte	0.314285714	1	0.657142857	0.647058824
Baldwin	0.085714286	0.657142857	1	0.764705882
Barrasso	0.117647059	0.647058824	0.764705882	1

CSCI 0931 - Intro. to Comp. for the Humanities and Social Sciences

TRANSPOSE

Makes a "row" array into a "column" array or vice-versa

SUMPRODUCT

Given two rows of the same length, multiply the corresponding cells and add up all these products.

SUMPRODUCT

Given two rows of the same length, multiply the corresponding cells and add up all these products.

(doesn't only work with rows – the selections just have to be the same "shape")

SUMPRODUCT example

The formula =SUMPRODUCT(A1:C1, A2:C2) gives 18:

(**11** x 0) + (**7** x 2) + (**4** x 1)

- Two ranges have to have same length...and both horizontal or both vertical
- SUMPRODUCT multiplies corresponding elements; sums up results
- Handy when one row contains prices, another contains quantities
 - SUMPRODUCT produces the total cost of buying things!
- You can use TRANSPOSE to get around the "both horizontal" restriction: see HW.

Back to voting

We redefine

1 for a Yea -1 for a Nay 0 for Not Voting

The SUMPRODUCT of any 2 votes tells us how much they agree: +1 point (good ⁽ⁱ⁾): both are 1 or -1
-1 point (bad ⁽ⁱ⁾): one is -1 and the other is 1
0 points (neutral): at least one did not vote

	Α	В	С	D	E	F
1	Alexander	1	1	0	-1	
2	Ayotte	-1	1	1	1	

CSCI 0931 - Intro. to Comp. for the Humanities and Social Sciences

Back to voting

• We've got this:

 Formula to compute *agree - disagree* for Alexander and Ayotte?

=SUMPRODUCT(B1:AQ1, B2:AQ2)

• Formula to compute agree + disagree? =SUMPRODUCT (ARRAYFORMULA (ABS (B1:AQ1)), ARRAYFORMULA (ABS (B2:AQ2)))

Our task:

Do this for every pair of senators

- One strategy:
 - For each pair of senators
 - Form an agree/disagree list
 - Compute its sumproduct
 - Compute the sumproduct of its absolute values
 - Take the quotient

Compare Every Pair in One Table

What We Have:

	1:1	1:2	1:3	1:4
Alexander	Yea	Yea	Yea	Yea
Ayotte	Yea	Yea	Yea	Yea
Baldwin	Nay	Yea	Yea	Yea
Barrasso	Yea	Yea	Yea	Yea

What We Want:

	Alexander	Ayotte	Baldwin	Barraso
Alexander	1	0.314285714	0.085714286	0.117647059
Ayotte	0.314285714	1	0.657142857	0.647058824
Baldwin	0.085714286	0.657142857	1	0.764705882
Barrasso	0.117647059	0.647058824	0.764705882	1

CSCI 0931 - Intro. to Comp. for the Humanities and Social Sciences

Making labels

- Row labels are easy: copy from the re-coded vote tab
- Column labels????
 - Want to use the row labels
 - But we want to "fill" across instead of down

– Let's open ACT 1-4

Column Labels

- Solution 1:
 - In cell A3 of your table, putTRANSPOSE(PivotTable!A3:A99)
 - Takes a block of cells and "flips it" over the NW-SE axis:

Why is that built in?
– Part of "matrix operations" that come up a lot

Grocery Store Prices (2 row and 4 cols)

	Bread	Milk	Doz. Eggs	Apples
PriceRight	\$3.09	\$2.90	\$1.85	\$1.15
Stop'n'Shop	\$3.49	\$3.89	Ş2.05	Ş0.79

	Bob	Carol	Dina
Bread	2	2	1
Milk	1	0	2
Doz. Eggs	2	1	1
Apples	2	4	3

	SUMPRODUCT(row 1, column 1)				
Food Bills (2 ro	ows and 3 cols):			
	Bob	Carol	Dina		
PriceRight	15,08				
Stop'n'Shop					

Grocery Store Prices (2 row and 4 cols)

	Bread	Milk Doz. Eggs App		Apples
PriceRight	\$3.09	\$2.90	\$1.85	\$1.15
Stop'n'Shop	\$3.49	\$3.89	Ş2.05	Ş0.79

	Bob	Carol	Dina
Bread	2	2	1
Milk	1	0	2
Doz. Eggs	2	1	1
Apples	2	4	3
Appies	2		5

Grocery Store Prices (2 row and 4 cols)

	Bread	Milk	Doz. Eggs	Apples
PriceRight	\$3.09	\$2.90	\$1.85	\$1.15
Stop'n'Shop	\$3.49	\$3.89	\$2.05	\$0.79

	æ	ob	Carol	Dina
Bread		2	2	1
Milk		1	0	2
Doz. Eggs		2	1	1
Apples		2	4	3

	SUMPRODUCT(row 2, column 1)					
Food Bills (2 rows and 3 cols):						
	В	b	Carol	Dina		
PriceRight	15.	08	12.63	14.19		
Stop'n'Shop	16.	55				

Grocery Store Prices (2 row and 4 cols)

	Bread	Milk	Doz. Eggs	Apples
PriceRight	\$3.09	\$2.90	\$1.85	\$1.15
Stop'n'Shop	\$3.49	\$3.89	\$2.05	\$0.79

	Bob	Carol	Dina
Bread	2	2	1
Milk	1	0	2
Doz. Eggs	2	1	1
Apples	2	4	3

	MMULT(GREEN, ORANGE)						
Food Bills (2 rows and 3 cols):							
Bob Carol Dina							
PriceRight	<u>15.08 12.63 14.19</u>						
Stop'n'Shop	16.55 12.19 15.69						

How can this help with our Senators?

		1:1	1:2	1:3	1:4	
	Alexander	1	1	1	1	
WIWULI	Avotte	1	-1	-1	-1	а
	Baldwin	1	1	0	1	
	Barrasso	1	0	1	-1	

TRANSPOSE

	Alexander	Ayotte	Baldwin	Barrasso
1:1	1	1	1	1
1:2	1	-1	1	0
1:3	1	-1	0	1
1:4	1	-1	1	-1

RESULT: Agreements – Disagreements

	Alexander	Ayotte	Baldwin	Barrasso
Alexander	4	-2	3	1
Ayotte	-2	4	-1	1
Baldwin	3	-1	3	0
Barrasso	1	1	0	3

CSCI 0931 - Intro. to Comp. for the Humanities and Social Sciences

How can this help with our Senators?

		1:1	1:2	1:3	1:4
MMULT	Alexander	1	1	1	1
	Avotte	1	1	1	1
	Baldwin	1	1	0	1
	Barrasso	1	0	1	1

ABS

TRANSPOSE of ABS

	Alexander	Ayotte	Baldwin	Barrasso
1:1	1	1	1	1
1:2	1	1	1	0
1:3	1	1	0	1
1:4	1	1	1	1

RESULT: Agreements + Disagreements

	Alexander	Ayotte	Baldwin	Barrasso
Alexander	4	4	3	3
Ayotte	4	4	3	3
Baldwin	3	3	3	2
Barrasso	3	3	2	3

CSCI 0931 - Intro. to Comp. for the Humanities and Social Sciences

ACT 1-4

- Work with your neighbor
- Ask lots of questions
- Let us know when you're done with the 4senator version

What can we do with similarity table?

- Look for very similar people
 Use color to help!
- Reorder the list to move similar people near each other
- If A is similar to B, and B similar to C...

 – Is A similar to C?
- Results

Discoveries

- Two major blocks
 - Democrats
 - Republicans
- Some oddballs
 - Democrat In Name Only (DINO)
 - ... (RINO)
- Substructure
 - Blue Dog Democrats
 - Mountain-state republicans?

Conclusion

- What matters isn't liberal vs conservative...
- It's the network structure in the senate!
 Who is in what group, what subgroup, etc.
 - Who are connectors between groups?
- Computation enabled this insight.