11-10

CS 53, Fall 2017

Due Nov. 13 at 2:59 pm

Be sure to show your work in calculations. (I don't mean show your arithmetic.) Be neat! Write legibly!

Problem 1: Define datapoints $p_1 = [10, 30], p_2 = [10, 10], p_3 = [30, 20]$. Compute the sum of squared distances from the datapoints to [20, 15]. Then compute the centroid of the datapoints, and compute the sum of squared distances from the datapoints to the centroid.

Problem 2: Let $\boldsymbol{b} = [1, \frac{1}{2}], \boldsymbol{v}_1 = [2, 2], \boldsymbol{v}_2 = [2, 0].$

- 1. Compute $b^{||v_1|}$ and $b^{||v_2|}$.
- 2. Let \hat{b} be the sum of the projections $b^{||v_1|}$ and $b^{||v_2|}$. We want to know if $b \hat{b}$ is orthogonal to v_1 . Consider the following equations

$$egin{array}{lll} \left\langle m{b} - \hat{m{b}}, m{v}_1
ight
angle &=& \left\langle m{b}, m{v}_1
ight
angle - \left\langle \hat{m{b}}, m{v}_1
ight
angle \\ &=& \left\langle m{b}, m{v}_1
ight
angle - \left\langle m{b}^{||m{v}_1} + m{b}^{||m{v}_2}, m{v}_1
ight
angle \\ &=& \left\langle m{b}, m{v}_1
ight
angle - \left\langle m{b}^{||m{v}_1}, m{v}_1
ight
angle - \left\langle m{b}^{||m{v}_2}, m{v}_1
ight
angle \end{array}$$

Calculate the vaue of the final expression on the right-hand side, $\langle \boldsymbol{b}, \boldsymbol{v}_1 \rangle - \langle \boldsymbol{b}^{||\boldsymbol{v}_1}, \boldsymbol{v}_1 \rangle - \langle \boldsymbol{b}^{||\boldsymbol{v}_2}, \boldsymbol{v}_1 \rangle$, by substituting $[1, \frac{1}{2}]$ for \boldsymbol{b} and [2, 2] for \boldsymbol{v}_1 and the vectors you computed for $\boldsymbol{b}^{||\boldsymbol{v}_1}$ and $\boldsymbol{b}^{||\boldsymbol{v}_2}$, and check if the result is zero.

- 3. We also want to know if $\boldsymbol{b} \hat{\boldsymbol{b}}$ is orthogonal to \boldsymbol{v}_2 .
 - (a) Write down the above equations, suitably modified to compute the inner product of $b \hat{b}$ with v_2 . The final expression should be

$$\langle m{b}, m{v}_2
angle - \left\langle m{b}^{||m{v}_1}, m{v}_2
ight
angle - \left\langle m{b}^{||m{v}_2}, m{v}_2
ight
angle$$

(b) Perform the analogous substitutions into this expression, and calculate the value, and check if it is zero.

Problem 3: Repeat the above problem but with one change: $v_2 = [2, -2]$.

Problem 4: See the lecture slides. I show that

$$egin{array}{rcl} \left\langle m{b} - \hat{m{b}}, m{v}_1
ight
angle &=& \left\langle m{b}, m{v}_1
ight
angle - \left\langle \hat{m{b}}, m{v}_1
ight
angle \\ &=& \left\langle m{b}, m{v}_1
ight
angle - \left\langle \sigma_1 m{v}_1 + \sigma_2 m{v}_2 + \dots + \sigma_n m{v}_n, m{v}_1
ight
angle \end{array}$$

Ignoring the cross-terms, show using algebra that $\langle \boldsymbol{b}, \boldsymbol{v}_1 \rangle = \langle \sigma \boldsymbol{v}_1, \boldsymbol{v}_1 \rangle$ by using the definition of σ_1 .