What is a linear combination of $v_1,\ldots,v_n?$	What is the name for the scalars multiplying the vectors in a linear combination?
When is a linear combination $lpha_1 oldsymbol{v}_1 + \dots + lpha_n oldsymbol{v}_n$ also an affine combination?	What is an affine space?
What conditions ensure that \mathcal{V} is a vector space?	

Coefficients	$\alpha_1 \boldsymbol{v}_1 + \dots + \alpha_n \boldsymbol{v}_n$
The set $a + \mathcal{V}$ where \mathcal{V} is a vector space.	When $\alpha_1 + \dots + \alpha_n = 1$
	 V1: V contains the zero vector, V2: For every vector v, if V contains v then it contains α v for every scalar α, is closed under scalar-vector multiplication, and V3: For every pair u and v of vectors, if V contains u and v then it contains u + v.