What are the names of the three definitions of matrix-vector multiplication and vector-matrix multiplication?	What is the linear-combination definition of matrix-vector multiplication?
What is the dot-product definition of matrix-vector multiplication?	What is the linear-combination definition of vector-matrix multiplication?
What is the dot-product definition of vector-matrix multiplication?	What are the three definitions of matrix-matrix multiplication?
What is the matrix-vector definition of matrix-matrix multiplication?	What is the vector-matrix definition of matrix-matrix multiplication?
What is the dot-product definition of matrix-matrix multiplication?	What is the definition of a linear function?

$M * \boldsymbol{v}$ is the linear combination of the columns of M where the coefficients are the entries of \boldsymbol{v} .	 The linear-combinations definition, the dot-product definition, and the "ordinary" definition.
$\boldsymbol{v} * M$ is the linear combination of the rows of M where the coefficients are the entries of \boldsymbol{v} .	Entry r of $M * v$ is the dot-product of row r with v .
The matrix-vector definition,the vector-matrix definition, andthe dot-product definition.	Entry c of $\boldsymbol{v} * M$ is the dot-product of \boldsymbol{v} with column c of M .
For each row-label r of A , row r of $AB = (row r of A) * B$	For each column-label s of B , column s of $AB = A * (\text{column } s \text{ of } B)$
A function $f: \mathcal{U} \longrightarrow \mathcal{V}$ whose domain and codomain are vector spaces, such that L1: For any vector \boldsymbol{u} in the domain of f and any scalar α in \mathbb{F} , $f(\alpha \boldsymbol{u}) = \alpha f(\boldsymbol{u})$ L2: For any two vectors \boldsymbol{u} and \boldsymbol{v} in the domain of f , $f(\boldsymbol{u} + \boldsymbol{v}) = f(\boldsymbol{u}) + f(\boldsymbol{v})$	Entry rc of AB is the dot-product of row r of A with column c of B .

What is the matrix-vector definition of matrix-matrix multiplication?	What is the vector-matrix definition of matrix-matrix multiplication?
Transpose of <i>AB</i> is ?	Outer product of u and v is ?
What is the null space of a matrix?	What is the Matrix Multiplication Lemma?
When is a linear function one-to-one?	What is a trivial vector space?
When are matrices A and B inverses of each other? (Definition)	When are matrices A and B inverses of each other? (Corollary)

